**Getting Started with Deep Learning** - Mar 24, 2017.

This post approaches getting started with deep learning from a framework perspective. Gain a quick overview and comparison of available tools for implementing neural networks to help choose what's right for you.

Tags: Caffe, CNTK, Deep Learning, Keras, SVDS, TensorFlow, Theano, Torch

**An Overview of Python Deep Learning Frameworks** - Feb 27, 2017.

Read this concise overview of leading Python deep learning frameworks, including Theano, Lasagne, Blocks, TensorFlow, Keras, MXNet, and PyTorch.

Tags: Deep Learning, Keras, Neural Networks, Python, TensorFlow, Theano, Torch

**5 Machine Learning Projects You Can No Longer Overlook** - May 19, 2016.

We all know the big machine learning projects out there: Scikit-learn, TensorFlow, Theano, etc. But what about the smaller niche projects that are actively developed, providing useful services to users? Here are 5 such projects.

Tags: Data Cleaning, Deep Learning, Machine Learning, Open Source, Overlook, Pandas, Python, scikit-learn, Theano

**7 Steps to Understanding Deep Learning** - Jan 11, 2016.

There are many deep learning resources freely available online, but it can be confusing knowing where to begin. Go from vague understanding of deep neural networks to knowledgeable practitioner in 7 steps!

**Pages:** 1 2

Tags: 7 Steps, Caffe, Convolutional Neural Networks, Deep Learning, Matthew Mayo, Recurrent Neural Networks, TensorFlow, Theano

**50 Deep Learning Software Tools and Platforms, Updated** - Dec 15, 2015.

We present the popular software & toolkit resources for Deep Learning, including Caffe, Cuda-convnet, Deeplearning4j, Pylearn2, Theano, and Torch. Explore the new list!

Tags: Caffe, Deep Learning, Pylearn2, Theano, Tools

**7 Steps to Mastering Machine Learning With Python** - Nov 19, 2015.

There are many Python machine learning resources freely available online. Where to begin? How to proceed? Go from zero to Python machine learning hero in 7 steps!

**Pages:** 1 2

Tags: 7 Steps, Anaconda, Caffe, Deep Learning, Machine Learning, Matthew Mayo, Python, scikit-learn, Theano

**Introducing: Blocks and Fuel – Frameworks for Deep Learning in Python** - Oct 26, 2015.

Blocks and Fuel are machine learning frameworks for Python developed by the Montreal Institute of Learning Algorithms (MILA) at the University of Montreal. Blocks is built upon Theano (also by MILA) and allows for rapid prototyping of neural network models. Fuel serves as a data processing pipeline and data interface for Blocks.

Tags: Deep Learning, Jim O' Donoghue, Python, Theano

**Popular Deep Learning Tools – a review** - Jun 18, 2015.

Deep Learning is the hottest trend now in AI and Machine Learning. We review the popular software for Deep Learning, including Caffe, Cuda-convnet, Deeplearning4j, Pylearn2, Theano, and Torch.

Tags: convnet, CUDA, Deep Learning, GPU, Pylearn2, Python, Ran Bi, Theano, Torch