KDnuggets Home » News » 2017 » Jun » Opinions, Interviews » 3 Key Trends Shaping the 2017 Data Science Hiring Market ( 17:n25 )

3 Key Trends Shaping the 2017 Data Science Hiring Market


 
 
http likes 63

Interesting finding include: salaries for early career data scientists decrease for the first time in four years, percent of early career data scientists with a PhD drops - read more for details.



By Burtch Works.

This post is an adapted excerpt from our newly-released report, The Burtch Works Study: Salaries of Data Scientists 2017, which examines updated compensation and demographic data for data scientists.

This report focuses specifically on data scientists that work with unstructured or streaming data, and does not include traditional predictive analytics professionals working with structured data, BI, IT, etc.

A few of the trends that stood out this year:
  • Salaries for early career data scientists decrease for the first time in four years
  • Percentage of early career data scientists with a PhD decreases from 43% in 2014 to 25% in 2017
We believe that prolonged "Big Data" hype is causing more data science hopefuls to enter the field, and the increase in supply is decreasing salaries at the junior end. We've also noticed that the hype is encouraging some data scientists to skip the PhD as a faster route to the workplace, to capitalize on the numerous opportunities available.




Four and a half years after Tom Davenport and DJ Patil declared data scientist to be the "sexiest job of the 21st century" in the Harvard Business Review, Burtch Works is releasing its fourth annual salary study for the profession. Fresh graduates, academics, and career changers alike all seem eager to jump in, and, over the years since our first study was released in 2014, we've watched several major trends take shape:

1. More junior-level data scientists available



Most noticeably, to anyone familiar with the "Big Data" hype, but especially to us as quantitative recruiters, is that the overall supply of junior-level data scientists has increased. In our 2016 study, we highlighted that degree and enrollment levels for the STEM fields have been increasing over the past few years. Taken together, math/statistics, engineering, computer science, and natural science degrees account for the academic backgrounds of 80% of data scientists, and the increased interest in all of these fields of study is undoubtedly having an effect on the market (see webinar for details).

2. More early career data scientists opting for Master's degrees, not PhD's



In last year's report we also noted that individual contributors with 0-3 years' experience, where demographic shifts often provide the most likely snapshot of where overall market trends are headed, started to tip towards more Master's degree holders, as opposed to PhD's. As we predicted, that shift has continued this year.

We believe that this is a result of more graduates opting for terminal Master's programs, looking for a faster path to the workplace to capitalize on the data tidal wave. We've also spoken with some individuals who have dropped out of their PhD programs, looking to pursue careers in data science immediately rather than spend several more years in academic research. Although that trend is not as widespread, many students are clearly intrigued by data science careers.

3. More traditional predictive analytics professionals transitioning into data science roles



Another substantial tributary feeding into the data science talent pool is other professionals in predictive analytics. Although we consider predictive analytics to be closely related to data science, for our purposes we generally distinguish between the two because data scientists have the tools and skills necessary to work with unstructured or streaming data, and so they will possess more computer science skills.

rubber ducks

However, as we pointed out in last year's report, The Burtch Works Study: Salaries of Predictive Analytics Professionals, more traditional analytics professionals have been learning typical data scientist tools and developing the skills necessary to transition into data science roles. Now, the fields have begun to blend even more, and we expect the amalgamating to continue as analytics professionals take advantage of MOOCs (massive open online courses), bootcamps, microdegrees, in-house training, and other programs to supplement their current skillsets.

This increase in supply, shift towards Master's degrees instead of PhD's, and blending of traditional predictive analytics professionals and data scientists is having an interesting effect on data science salaries. For full compensation and demographic information on this in-demand group be sure to download the full report!

Original. Reposted with permission.