KDnuggets Home » News » 2018 » Feb » Tutorials, Overviews » A Tour of The Top 10 Algorithms for Machine Learning Newbies ( 18:n09 )

Gold BlogA Tour of The Top 10 Algorithms for Machine Learning Newbies


For machine learning newbies who are eager to understand the basic of machine learning, here is a quick tour on the top 10 machine learning algorithms used by data scientists.



6 — K-Nearest Neighbors

 
The KNN algorithm is very simple and very effective. The model representation for KNN is the entire training dataset. Simple right?

Predictions are made for a new data point by searching through the entire training set for the K most similar instances (the neighbors) and summarizing the output variable for those K instances. For regression problems, this might be the mean output variable, for classification problems this might be the mode (or most common) class value.

The trick is in how to determine the similarity between the data instances. The simplest technique if your attributes are all of the same scale (all in inches for example) is to use the Euclidean distance, a number you can calculate directly based on the differences between each input variable.


K-Nearest Neighbors

KNN can require a lot of memory or space to store all of the data, but only performs a calculation (or learn) when a prediction is needed, just in time. You can also update and curate your training instances over time to keep predictions accurate.

The idea of distance or closeness can break down in very high dimensions (lots of input variables) which can negatively affect the performance of the algorithm on your problem. This is called the curse of dimensionality. It suggests you only use those input variables that are most relevant to predicting the output variable.

 

7 — Learning Vector Quantization

 
A downside of K-Nearest Neighbors is that you need to hang on to your entire training dataset. The Learning Vector Quantization algorithm (or LVQ for short) is an artificial neural network algorithm that allows you to choose how many training instances to hang onto and learns exactly what those instances should look like.


Learning Vector Quantization

The representation for LVQ is a collection of codebook vectors. These are selected randomly in the beginning and adapted to best summarize the training dataset over a number of iterations of the learning algorithm. After learned, the codebook vectors can be used to make predictions just like K-Nearest Neighbors. The most similar neighbor (best matching codebook vector) is found by calculating the distance between each codebook vector and the new data instance. The class value or (real value in the case of regression) for the best matching unit is then returned as the prediction. Best results are achieved if you rescale your data to have the same range, such as between 0 and 1.

If you discover that KNN gives good results on your dataset try using LVQ to reduce the memory requirements of storing the entire training dataset.

 

8 — Support Vector Machines

 
Support Vector Machines are perhaps one of the most popular and talked about machine learning algorithms.

A hyperplane is a line that splits the input variable space. In SVM, a hyperplane is selected to best separate the points in the input variable space by their class, either class 0 or class 1. In two-dimensions, you can visualize this as a line and let’s assume that all of our input points can be completely separated by this line. The SVM learning algorithm finds the coefficients that results in the best separation of the classes by the hyperplane.


Support Vector Machine

The distance between the hyperplane and the closest data points is referred to as the margin. The best or optimal hyperplane that can separate the two classes is the line that has the largest margin. Only these points are relevant in defining the hyperplane and in the construction of the classifier. These points are called the support vectors. They support or define the hyperplane. In practice, an optimization algorithm is used to find the values for the coefficients that maximizes the margin.

SVM might be one of the most powerful out-of-the-box classifiers and worth trying on your dataset.

 

9 — Bagging and Random Forest

 
Random Forest is one of the most popular and most powerful machine learning algorithms. It is a type of ensemble machine learning algorithm called Bootstrap Aggregation or bagging.

The bootstrap is a powerful statistical method for estimating a quantity from a data sample. Such as a mean. You take lots of samples of your data, calculate the mean, then average all of your mean values to give you a better estimation of the true mean value.

In bagging, the same approach is used, but instead for estimating entire statistical models, most commonly decision trees. Multiple samples of your training data are taken then models are constructed for each data sample. When you need to make a prediction for new data, each model makes a prediction and the predictions are averaged to give a better estimate of the true output value.


Random Forest

Random forest is a tweak on this approach where decision trees are created so that rather than selecting optimal split points, suboptimal splits are made by introducing randomness.

The models created for each sample of the data are therefore more different than they otherwise would be, but still accurate in their unique and different ways. Combining their predictions results in a better estimate of the true underlying output value.

If you get good results with an algorithm with high variance (like decision trees), you can often get better results by bagging that algorithm.

 

10 — Boosting and AdaBoost

 
Boosting is an ensemble technique that attempts to create a strong classifier from a number of weak classifiers. This is done by building a model from the training data, then creating a second model that attempts to correct the errors from the first model. Models are added until the training set is predicted perfectly or a maximum number of models are added.

AdaBoost was the first really successful boosting algorithm developed for binary classification. It is the best starting point for understanding boosting. Modern boosting methods build on AdaBoost, most notably stochastic gradient boosting machines.


AdaBoost

AdaBoost is used with short decision trees. After the first tree is created, the performance of the tree on each training instance is used to weight how much attention the next tree that is created should pay attention to each training instance. Training data that is hard to predict is given more weight, whereas easy to predict instances are given less weight. Models are created sequentially one after the other, each updating the weights on the training instances that affect the learning performed by the next tree in the sequence. After all the trees are built, predictions are made for new data, and the performance of each tree is weighted by how accurate it was on training data.

Because so much attention is put on correcting mistakes by the algorithm it is important that you have clean data with outliers removed.

 
Last Takeaway

A typical question asked by a beginner, when facing a wide variety of machine learning algorithms, is “which algorithm should I use?” The answer to the question varies depending on many factors, including: (1) The size, quality, and nature of data; (2) The available computational time; (3) The urgency of the task; and (4) What you want to do with the data.

Even an experienced data scientist cannot tell which algorithm will perform the best before trying different algorithms. Although there are many other Machine Learning algorithms, these are the most popular ones. If you’re a newbie to Machine Learning, these would be a good starting point to learn.

 
Bio: James Le is currently applying for Master of Science Computer Science programs in the US for the Fall 2018 admission. His intended research will focus on Machine Learning and Data Mining. In the mean time, he is working as a freelance full-stack web developer.

Original. Reposted with permission.

Related:


Sign Up