Why data catalogs aren’t meeting the needs of the modern data stack, and how a new approach – data discovery – is needed to better facilitate metadata management and data reliability.
Machine learning models deployed today -- as will many more in the future -- impact people and society directly. With that power and influence resting in the hands of Data Scientists and machine learning engineers, taking the time to evaluate and understand if model results are fair will become the linchpin for the future success of AI/ML solutions. These are critical considerations, and using a recently developed fairness module in the dalex Python package is a unified and accessible way to ensure your models remain fair.
Automated Machine Learning, or AutoML, tries hundreds or even thousands of different ML pipelines to deliver models that often beat the experts and win competitions. But, is this the ultimate goal? Can a model developed with this approach be trusted without guarantees of predictive performance? The issue of overfitting must be closely considered because these methods can lead to overestimation -- and the Winner's Curse.
While it is important for enterprises to continue solving the past challenges in a machine learning pipeline (manage, monitor, track experiments and models) in 2021 enterprises should focus on strategies to achieve scalability, elasticity and operationalization of machine learning.
Delivering machine learning solutions is so much more than the model. Three key concepts covering version control, testing, and pipelines are the foundation for machine learning operations (MLOps) that help data science teams ship models quicker and with more confidence.
Creating an model that works well is only a small aspect of delivering real machine learning solutions. Learn about the motivation behind MLOps, the framework and its components that will help you get your ML model into production, and its relation to DevOps from the world of traditional software development.
Deploying AI ethically and responsibly will involve cross-functional team collaboration, new tools and processes, and proper support from key stakeholders.
We bring you industry predictions from 12 innovative companies - what key trends they expect in 2021 in AI, Analytics, Data Science, and Machine Learning?
Increased capabilities in screening and early testing for a disease can significantly support quelling its spread and impact. Recent progress in developing deep learning AI models to classify cough sounds as a prescreening tool for COVID-19 has demonstrated promising early success. Cough-based diagnosis is non-invasive, cost-effective, scalable, and, if approved, could be a potential game-changer in our fight against COVID-19.
Kaggle recently released its State of Data Science and Machine Learning report for 2020, based on compiled results of its annual survey. Read about 3 key findings in the report here.
As is the potential for any "trending hot" career, the reality of a position in the field may not be all that you initially expected. Data Science is no exception, and being still a young field, its evolving definition can offer some surprises that you should know about before accepting that dream offer.
In this blog post, the author explains his journey from Software Engineer to Machine Learning Engineer. The focus of the blog post is on the areas that the author wished he'd have focused on during his learning journey, and what should you look for outside of books and courses when pursuing your Machine Learning career.
Our panel of leading experts reviews 2020 main developments and examines the key trends in AI, Data Science, Machine Learning, and Deep Learning Technology.
The well-established technologies and tools around ETL (Extract, Transform, Load) are undergoing a potential paradigm shift with new approaches to data storage and expanding cloud-based compute. Decoupling the EL from T could reconcile analytics and operational data management use cases, in a new landscape where data warehouses and data lakes are merging.
2020 is finally coming to a close. While likely not to register as anyone's favorite year, 2020 did have some noteworthy advancements in our field, and 2021 promises some important key trends to look forward to. As has become a year-end tradition, our collection of experts have once again contributed their thoughts. Read on to find out more.