Between the four main NoSQL database types, graph databases are widely appreciated for their application in handling large sets of unstructured data coming from various sources. Let’s talk about how graph databases work and what are their practical uses.
Venturing into the world of Data Science is an exciting, interesting, and rewarding path to consider. There is a great deal to master, and this self-learning recommendation plan will guide you toward establishing a solid understanding of all that is foundational to data science as well as a solid portfolio to showcase your developed expertise.
The first step of any data science project is data collection. While it can be the most tedious and time-consuming step during your workflow, there will be no project without that data. If you are scraping information from the web, then several great tools exist that can save you a lot of time, money, and effort.
Lessons from network science and the difficulty of graph anonymization. A data scientist's take on the difficultly of striking a balance between privacy and utility in anonymizing connected data.
By reading papers, we were able to learn what others (e.g., LinkedIn) have found to work (and not work). We can then adapt their approach and not have to reinvent the rocket. This helps us deliver a working solution with lesser time and effort.
At the beginning of any data science project, many challenges could arise that lead to its eventual collapse. Making sure you look ahead -- early in the planning -- toward putting your resulting model into production can help increase the chance of delivering long-term value with your developed machine learning system.
EDA can be automated using a Python library called Pandas Profiling. Let’s explore Pandas profiling to do EDA in a very short time and with just a single line code.
Data Science is founded on time-honored concepts from statistics and probability theory. Having a strong understanding of the ten ideas and techniques highlighted here is key to your career in the field, and also a favorite topic for concept checks during interviews.
Also: Telling a Great Data Story: A Visualization Decision Tree; Cartoon: Data Scientist vs Data Engineer; Data Science vs Business Intelligence, Explained; Approaching (Almost) Any Machine Learning Problem
Synthetic data can be used to test new products and services, validate models, or test performances because it mimics the statistical property of production data. Today you'll find different types of structured and unstructured synthetic data.
EDA is a fundamental early process for any Data Science investigation. Typical approaches for visualization and exploration are powerful, but can be cumbersome for getting to the heart of your data. Now, you can get to know your data much faster with only a few lines of code... and it might even be fun!
Research shows that people skills are becoming more important with the rise of AI. A great way to boost these skills is by reading the new book: People Skills for Analytical Thinkers.
This tutorial discusses the confusion matrix, and how the precision, recall and accuracy are calculated, and how they relate to evaluating deep learning models.
With so many organizations now taking the leap into building production-level machine learning models, many lessons learned are coming to light about the supporting infrastructure. For a variety of important types of use cases, maintaining a centralized feature store is essential for higher ROI and faster delivery to market. In this review, the current feature store landscape is described, and you can learn how to architect one into your MLOps pipeline.
This blog post provides an overview of the package “msda” useful for time-series sensor data analysis. A quick introduction about time-series data is also provided.
Anyone looking to obtain a data science certificate to prove their ability in the field will find a range of options exist. We review several valuable certificates to consider that will definitely pump up your resume and portfolio to get you closer to your dream job.
New products forecasting can be very difficult - there is no history to start with, and hence no base line. The number of assumptions can be huge. The best way to forecast then, is to try parallel approaches, build different views and triangulate on a common range.
Mike McCarty and Gil Forsyth work at the Capital One Center for Machine Learning, where they are building internal PyData libraries that scale with Dask and RAPIDS. For this webinar, Feb 23 @ 2 pm PST, 5pm EST, they’ll join Hugo Bowne-Anderson and Matthew Rocklin to discuss their journey to scale data science and machine learning in Python.
Thanks to the diversity of the dataset used in the training process, we can obtain adequate text generation for text from a variety of domains. GPT-2 is 10x the parameters and 10x the data of its predecessor GPT.
Many resources exist for the self-study of data science. In our modern age of information technology, an enormous amount of free learning resources are available to anyone, and with effort and dedication, you can master the fundamentals of data science.
In this article, we explore how to build a pipeline and process real-time video with Deep Learning to apply this approach to business use cases overviewed in our research.
Hands-On Machine Learning Training from UChicago: 5-week remote Machine Learning for Cybersecurity certificate, Mar 30 - Apr 27. Learn from & network with leading faculty/industry leaders, learn data-driven prevention strategies. Group discounts, tuition support.
To trigger an alert when data breaks, data teams can leverage a tried and true tactic from our friends in software engineering: monitoring and observability. In this article, we walk through how you can create your own data quality monitors for freshness and distribution from scratch using SQL.
The rapid development of Transformers have brought a new wave of powerful tools to natural language processing. These models are large and very expensive to train, so pre-trained versions are shared and leveraged by researchers and practitioners. Hugging Face offers a wide variety of pre-trained transformers as open-source libraries, and you can incorporate these with only one line of code.
We’re excited to announce that a new open-source project has joined the Alteryx open-source ecosystem. EvalML is a library for automated machine learning (AutoML) and model understanding, written in Python.
Also: The Best Data Science Project to Have in Your Portfolio; How to Get Your First Job in Data Science without Any Work Experience; How to Get Data Science Interviews: Finding Jobs, Reaching Gatekeepers, and Getting Referrals
Linear algebra is the branch of mathematics that studies vector spaces. You’ll see how vectors constitute vector spaces and how linear algebra applies linear transformations to these spaces. You’ll also learn the powerful relationship between sets of linear equations and vector equations.
Natural language processing has already begun to transform to way humans interact with computers, and its advances are moving rapidly. The field is built on core methods that must first be understood, with which you can then launch your data science projects to a new level of sophistication and value.
NoSQL Databases have four distinct types. Key-value stores, document-stores, graph databases, and column-oriented databases. In this article, we’ll explore column-oriented databases, also known simply as “NoSQL columns”.
Advance your data science career with Northwestern. Build the essential technical, analytical, and leadership skills needed for careers in today's data-driven world in Northwestern's Master of Science in Data Science program. Apply now.
Scikit-Learn is an easy to use a Python library for machine learning. However, sometimes scikit-learn models can take a long time to train. The question becomes, how do you create the best scikit-learn model in the least amount of time?
Just as with most things in life, assumptions can directly lead to success or failure. Similarly in machine learning, appreciating the assumed logic behind machine learning techniques will guide you toward applying the best tool for the data.
There’s a clear inclination towards the MLaaS model across industries, given the fact that companies today have an option to select from a wide range of solutions that can cater to diverse business needs. Here is a look at 3 of the top ML platforms for data excellence.
Today’s engineers need to be equipped with the tools to take on leadership positions across industries. The new master’s program at the University of Chicago’s Pritzker School of Molecular Engineering will provide you with a streamlined and flexible degree to give you broad exposure across science and engineering disciplines, while preparing you for the immediate next step in your professional journey.
The Data Scientist professional has emerged as a true interdisciplinary role that spans a variety of skills, theoretical and practical. For the core, day-to-day activities, many critical requirements that enable the delivery of real business value reach well outside the realm of machine learning, and should be mastered by those aspiring to the field.
The demand for analytics skills and talent has never been higher. As the workforce continues to evolve, so do the technology and skillsets required. Millennium Bank has partnered with SAS to customize a tailored development training program that improved skills and knowledge, while strengthening retention.
Data science success depends on leaders, not the latest hands-on programming skills. So, we need to start looking for the right leadership skills and stop stuffing job postings with requirements for experience in the most current development tools.
In this post, the author shares what to do to get job interviews efficiently. Find answers to these questions: Where should I look for data science jobs? How do I reach out to the gatekeeper? How do I get referrals? What makes a good data science resume?
If you are trying to find your first path into a Data Science career, then demonstrating the quality of your skills can be the greatest hurdle. While many standard projects exist for anyone to complete, creating an original data-driven project that attempts to solve some challenge is worth so much more. A good Data Scientist is one that can solve data-related questions, and a great Data Scientist poses original data-related questions and then solves.
Also: Build Your First Data Science Application; 3 Ways Understanding Bayes Theorem Will Improve Your Data Science; Deep learning doesn’t need to be a black box; Essential Math for Data Science: Introduction to Matrices and the Matrix Product
As vectors, matrices are data structures allowing you to organize numbers. They are square or rectangular arrays containing values organized in two dimensions: as rows and columns. You can think of them as a spreadsheet. Learn more here.
The cultural perception of AI is often suspect because of the described challenges in knowing why a deep neural network makes its predictions. So, researchers try to crack open this "black box" after a network is trained to correlate results with inputs. But, what if the goal of explainability could be designed into the network's architecture -- before the model is trained and without reducing its predictive power? Maybe the box could stay open from the beginning.
This article will shed some light on processes happening under the roof of ML-based solutions on the example of the business case where the future success directly depends on the ability to predict unknown values from the past.
Data science and data analytics can be beautiful things. Not only because of the insights and enhancements to decision-making they can provide, but because of the rich visualizations about the data that can be created. Following this step-by-step guide using the Matplotlib and Seaborn libraries will help you improve the presentation and effective communication of your work.
In 2021, we are celebrating the 10-year anniversary of DanNet, which, in 2011, was the first pure deep convolutional neural network (CNN) to win computer vision contests. Read about its history here.
This article is an overview of how to get started with 5 popular Python NLP libraries, from those for linguistic data visualization, to data preprocessing, to multi-task functionality, to state of the art language modeling, and beyond.
So much time and effort can go into training your machine learning models. But, shut down the notebook or system, and all those trained weights and more vanish with the memory flush. Saving your models to maximize reusability is key for efficient productivity.
In order to mitigate risks when modelling extreme events, it is vital to be able to generate a wide range of extreme, and realistic, scenarios. Researchers from the National University of Singapore and IIT Bombay have developed an approach to do just that.
Maybe you are embarking on a new learning journey into the world of data and its analysis, or you already launched your career in the field. But, how can you make sure that data science is your calling? Indeed, if you feel good in your job, then you are likely on the right path.
Also: How I Got 4 Data Science Offers and Doubled my Income 2 Months After Being Laid Off; How to Get a Job as a Data Scientist; Data Engineering — the Cousin of Data Science, is Troublesome; What to Learn to Become a Data Scientist in 2021
On March 8, 2021, Stanford will host the inaugural 24-hour virtual Women in Data Science (WiDS) Worldwide conference. Find out speaker and registration information here.
If you are the "data person" for your organization, then providing meaningful results to stakeholder data requests can sometimes feel like shots in the dark. However, you can make sure your data analysis is actionable by asking one magic question before getting started.