Data extraction tools give you the boost you need for gathering information from a multitude of data sources. These four data extraction tools will help liberate you from manual data entry, understand complex documents, and simplify the data extraction process.
In this article, you will learn what the basis of a vector space is, see that any vectors of the space are linear combinations of the basis vectors, and see how to change the basis using change of basis matrices.
You have heard it before, and you will hear it again. It's all about the data. Curating the right data is also so important than just curating any data. When dealing with text data, many hard-earned lessons have been learned by others over the years, and here are four data curation tips that you should be sure to follow during your next NLP project.
The NLP Index is a brand new resource for NLP code discovery, combining and indexing more than 3,000 paper and code pairs at launch. If you are interested in NLP research and locating the code and papers needed to understand an implement the latest research, you should check it out.
As of late, every year seems to be a "break-out" year for AI. So, it's time for you to get ready for the future in the age of automation. This collection of books will help you prepare for the many opportunities to come, many of which may not have yet been imagined.
What does it take to create and deploy a topic modeling web application quickly? Read this post to see how the author uses Python NLP packages for topic modeling, Streamlit for the web application framework, and Streamlit Sharing for deployment.
Before we reach model training in the pipeline, there are various components like data ingestion, data versioning, data validation, and data pre-processing that need to be executed. In this article, we will discuss data validation, why it is important, its challenges, and more.
Winning seed funding from venture capitalists is a daunting task, and the pitch is key. Learn how one effective slide deck resulted in a successful early funding round for an open-source start-up, Airbyte.
DataOps (Data Operations) has assumed a critical role in the age of big data to drive definitive impact on business outcomes. This process-oriented and agile methodology synergizes the components of DevOps and the capabilities of data engineers and data scientists to support data-focused workloads in enterprises. Here is a detailed look at DataOps.
With an estimated 44 zettabytes of data in existence in our digital world today and approximately 2.5 quintillion bytes of new data generated daily, there is a lot of data out there you could tap into for your data science projects. It's pretty hard to curate through such a massive universe of data, but this collection is a great start. Here, you can find data from cancer genomes to UFO reports, as well as years of air quality data to 200,000 jokes. Dive into this ocean of data to explore as you learn how to apply data science techniques or leverage your expertise to discover something new.
WeightWatcher is based on theoretical research (done injoint with UC Berkeley) into Why Deep Learning Works, based on our Theory of Heavy Tailed Self-Regularization (HT-SR). It uses ideas from Random Matrix Theory (RMT), Statistical Mechanics, and Strongly Correlated Systems.
In this article, we are going to explain what Differentiable Programming is by developing from scratch all the tools needed for this exciting new kind of programming.
If you are preparing to make a career in data or are looking for opportunities to skill-up in your current data-centric role, then this analysis of in-demand skills for 2021, based on over 17,000 Data Engineer job postings, should offer you a good idea as to which programming languages and software tools are increasing and decreasing in importance.
Marketing scientist Kevin Gray asks Dr. Anna Farzindar of the University of Southern California for a snapshot of machine translation. Dr. Farzindar also provided the original art for this article.
If you are working with big data, especially on your local machine, then learning the basics of Vaex, a Python library that enables the fast processing of large datasets, will provide you with a productive alternative to Pandas.
Let's take a look at nine of the best Python books for both beginners and advanced programmers, covering topics such as data science, machine learning, deep learning, NLP, and more.
AutoML frameworks are getting better every day, and can provide high-performing ML pipelines, unique data insights, and ML explanations. No longer black-boxes, these powerful tools offer self-documenting capabilities and native Python notebook support.
Are you a NoSQL beginner, but want to become a NoSQL Know-It-All? Well, this is the place for you. Get up to speed on NoSQL technologies from a beginner's point of view, with this collection of related progressive posts on the subject. NoSQL? No problem!
As an aspiring data scientist or an employed professional, many opportunities exist for you to offer your skills to a broader audience through side gigs. While the difficulty and risk vary, experiences from applying your data science practice to areas outside your immediate career path can increase your expertise while even increasing your bank account.
Saturn Cloud is a tool that allows you to have 10 hours of free GPU computing and 3 hours of Dask Cluster computing a month for free. In this tutorial, you will learn how to use these free resources to process data using Pandas on a GPU. The experiments show that Pandas is over 1,000,000% slower on a CPU as compared to running Pandas on a Dask cluster of GPUs.
Browser extensions are a productivity secret weapon for hackers and developers. Many machine learning practitioners use Chrome, and this list features must-have Chrome extensions for machine learning engineers and data scientists that you should check out today.
Linear algebra is foundational in data science and machine learning. Beginners starting out along their learning journey in data science--as well as established practitioners--must develop a strong familiarity with the essential concepts in linear algebra.
Read this applied Python method to solve the issue of accessing column by date/ year using the Pandas library and functions lambda(), list(), map() & explode().
The field of Artificial Intelligence is extremely broad and captures a winding history through the evolution of various sub-fields that experienced many ups and downs over the years. Appreciating AI within its historical contexts will enhance your communication with the public, colleagues, and potential hiring managers, as well as guide your thinking as you progress in the application and study of state-of-the-art techniques.