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Abstract 

In assessing the potential of data mining based marketing 

campaigns one needs to estimate the payoff of applying 

modeling to the problem of predicting behavior of some target 

population (e.g. attriters, people likely to buy product X, people 

likely to default on a loan, etc).  This assessment has two 

components: a) the financial estimate of the campaign 

profitability, based on cost/benefit analysis and b) estimation of 

model accuracy in the targeted population using measures such 

as lift.  

 

We present a methodology for initial cost/benefit analysis and 

present surprising empirical results, based on actual business 

data from several domains, on achievable model accuracy.  We 

conjecture that lift at T (where T is the target frequency) is 

usually about sqrt(1/T ) for a good model. We also present 

formulae for estimating the entire lift curve and estimating 

expected profits. 

 

Keywords: database marketing, estimation, lift 

 

1. INTRODUCTION  
 

Direct marketing is a common area for applying data mining [1,   

4,5]. The goal is to predict a specific behavior of the customer, 

such as buying a product, attriting (churning) from a service, 

defaulting on a loan, etc.  If a company can identify a group of 

customers where the target behavior is more likely, (e.g. group 

more likely to churn), then the company can conduct marketing 

campaigns to change the behavior in the desired direction (e.g. 

decrease churn).  If targeting criteria are well chosen for a 

direct mail campaign, the company can mail to a much smaller 

group of people to get the same number of responses. The 

increased concentration of the „right targets‟ (e.g. churners or 

responders) in such targeted campaigns enables increased ROI.  

In assessing the potential of such campaigns one may want to 

estimate certain financial parameters such as profitability or 

relative increase in the concentration of the targets (lift) in the 

targeted group.  In this paper we ask whether and when it is 

possible to quickly estimate parameters such as lift based on 

the problem features before attempting the complex task of 

modeling. We define guidelines for when one might consider 

deploying marketing campaigns and propose estimation 

formulae for lift at an important fixed point and over the entire 

lift curve. 

 

In sections 2 and 3 we define the basic terminology and 

guidelines for conducting such an assessment. In section 4   we 

investigate the relationship between lift and the target 

frequency. In section 5 we analyze how the lift decreases with 

respect to increasing subsets of population and in section 6 we  

use the lift  curve and cost estimates to derive an estimate for 

expected maximum profit. We conclude with a discussion of 

the limits of these heuristics and possible directions for 

extending this inquiry. 

 

2. ESTIMATING CAMPAIGN PAYOFF  
 

The key parameters for the assessment of a targeted marketing 

campaign are: 

 N -- the total number of customers (e.g. 1,000,000) 

 T -- the fraction of target customers, (e.g. 0.02) who have 

the desired behavior (e.g. response to mail offers) 

B -- Benefit of an accepted offer A by a customer correctly 

identified as a target (e.g. $50) 

C -- Cost of making an offer A to a customer, whether a 

target or not, e.g. $5) 

 

Let Profit(P) be the profit of making offer to P percent of all 

customers (where 0 < P < 1).  The profit for making an offer to 

all customer is 

(1)   Profit(1.0) = NTB - NC = N (TB - C)  

 

Using values for N, T, B, and C as above, the offer has an 

estimated profit of -$400,000, i.e. making an offer to everybody 

is unprofitable.   
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Of course, costs and especially benefits are not uniform, see 

[9],  but this method is useful for an initial estimate. Also there 

may be a probabilistic aspect to the offer (whether it is 

accepted or not) which can be folded into the estimated benefit 

or cost values for simplicity. 

 

Note that whether the profit is positive does not depend on N, 

B, or C but only on whether TB  - C > 0 or  

(2)  TB / C > 1 

i.e. only on the benefit/cost ratio and the target frequency. 

 

We also note that even when contacting everybody is profitable, 

it may not be the most profitable course.  One could improve 

the profit by selecting a subset of customers, as examined in the 

next section. 

 

The Promised Land 

The promise of data mining is that it can find a subset P2 (of 

size N P2) of the population where the fraction of targets T2, is 

ficiently higher than in the overall population so that making an 

offer to P2  is more profitable than making an offer to all.  

We can use the formula (1) to estimate the profit of making an 

offer A to P2  

 

(3) Profit(P2,T2) = NP2 ( T2 B - C)  

 

The standard measure for comparing the target frequency of a 

subset with the target frequency in the entire population is the 

lift, defined as Lift (P2) = T2 / T.   

We can rewrite (3) as  

(4)  Profit(P2,T2,) = NP2 (T* Lift(P2) B - C)  

 

Again we note that whether making an offer to a subset P2 is 

profitable depends only on whether T* Lift(P2) B > C .  We 

can formulate it as   

 

Campaign Profitability Condition:      

                    

 (5)  Lift(P2) > C/BT            

 

This gives us a rule of thumb for estimating the lift we need to 

achieve to make the campaigns profitable.  

 

For example, if T is 0.02, B is $50, and C is $5, then we need 

to select a subset with lift > 5 to achieve profit.  

 

We should also note that condition (5) is the minimum 

condition of profitability, which defines the largest subset 

which is still profitable.  It does not define the optimal subset 

with the highest profit -- such a bset is the one that maximizes 

equation (4).   

 

The following sections discuss estimating of lift and selection 

of optimal subset. 

 

3.  ESTIMATING LIFT  
 

To compute the actual lift data miners go through the lengthy 

process of examining the data available, selecting the data, 

obtaining permissions, transferring the data, obtaining the 

meta-data, cleaning the data, modeling etc. The initial steps of 

data preprocessing and cleaning is often very time consuming 

[2] and may take a couple of months before even the first model 

appears.    

 

Can we say something about the expected lift for typical 

business problems such as attrition and cross-sell before we do 

the modeling?   

 

In general, the answer is no, since every problem is different 

and has different underlying patterns.  Furthermore, different 

modeling algorithms generally produced different results [6]. 

However, we examined a number of actual business from the 

financial and telecommunications arena and found a surprising 

result – it appears that there is a heuristic formula for 

estimating the lift.   

4. LIFT CONJECTURE FOR LIFT AT T 
 

In this section we present an empirical observation about the 

typical lift one can see in campaign-type data mining problems, 

where we need to classify customers into two types: target and 

non-target population.   We are not claiming that every model 

will have a lift similar to the formula below – one can easily 

come up with a poor or random model with worse results.  

What we are proposing is that for a certain class of target 

marketing problems there is a rough estimate for the best lift 

one can expect.  

  

4.1  Lift vs accuracy 
First we address the question: Why do we focus on lift and not 

overall accuracy?  

 

A modeling method, such as neural network or a decision tree 

typically build a model on a training set to predict the target 

probability and is further evaluated on a separate validation set.  

The validation set is then sorted in descending order by the 

target probability.  The frequencies of actual and predicted 

target values are then measured at some set intervals, usually in 

5% increments.  Generally speaking, if the modeling method is 

successful, we should find a higher concentration of targets at 

the top of the list and this higher proportion of targets can be 

measured in terms of “lift” to see how much better than random 

the model-based targeting is. While accuracy measures correct 

predictions for the whole population, lift measures the 

increased accuracy for a targeted subset, e.g. the top  part of a 
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model-score ranked list. Therefore it is very possible [5] that a 

modeling method with lower accuracy can result in higher lift 

at the top of the list.  To produce a better lift, one doesn‟t need 

to have higher accuracy over all targets but only over a 

sufficiently large subset. 

 

 Since the goal of the target marketing is not to predict the 

customer behavior for everybody, but find a good subset of 

customers where the target behavior has a higher proportion, 

we are interested in models that maximize lift and not the 

overall accuracy.   Analyzing the lift curve and lift values is 

thus very important for target marketing applications. 

 

4.2  Definition of lift for  a subscriber list 

ranked by model-score  
 

Let Lift(P,T) be the lift obtained by selecting the top P percent  

of the customer list sorted by a model score. For example if T is 

0.02 there are 2% targets in the overall population. Then if the 

top 5% of the list has a 10% concentration of targets (or 0.1 as 

a fraction) then Lift(5%) is 0.1/0.02 = 5.  Alternately lift can 

also be calculated by looking at the cumulative targets captured 

up to P% as a percentage of all targets and dividing by P%. 

For example if the top 5% of the list captures 20% of all 

targets then lift is 20/5 = 4.  Lift is a common measure of how 

well model selection does compared to a random selection.  

Note:  If we don‟t use percentage after P, then we are using P 

as a fraction.  So  Lift(5%,T) is the same as Lift(0.05,T) 

 

Table 1 shows a representative lift table from the KDD-Cup 97 

[7], generated by co-winner BNB [3] 

 

For example, the second line in this table means that at 10% of 

the model-score sorted list, there are 15062 records, of which 

708 are “hits” – targets correctly identified.  The cumulative 

accuracy in the first 10% is 708/15062= 4.70%. 708 hits are 

also 34.6 percent of all targets, giving a lift of 34.6/10 = 3.46.  

Here N = 150616, targets= 2046, T=1.36%. 

 

4.3  Relationship between Lift and T 
 

By definition lift at 100% is always 1, i.e.  Lift(100%,T)  = 1.  

We also observe that the maximum possible lift is 1/T.  

 

Since the data mining problems are all different it is very 

difficult to make general statements about the lift curve 

behavior.   However, based on our experience in several 

business domains and observations of similar results obtained 

by others, we can make several heuristic observations about the 

lift curve in targeted marketing problems. 

 

(1) As P increases from 0 to 100, lift is usually monotically 

decreasing with increasing P 

 Lift(P1,T)  >  Lift(P2,T),  for P1 <   P2 

 

Pct Records Cum Hits Hits% CumPHits

% 

Lift 

5 7531 448 5.95 21.9 4.38 

10 15062 708 4.70 34.6 3.46 

15 22592 897 3.97 43.9 2.92 

20 30123 1012 3.36 49.5 2.47 

25 37654 1158 3.08 56.6 2.26 

30 45185 1265 2.80 61.8 2.06 

35 52716 1348 2.56 65.9 1.88 

40 60246 1433 2.38 70.0 1.75 

45 67777 1539 2.27 75.2 1.67 

50 75308 1610 2.14 78.7 1.57 

55 82839 1673 2.02 81.8 1.49 

60 90370 1721 1.90 84.1 1.40 

65 97900 1782 1.82 87.1 1.34 

70 105431 1833 1.74 89.6 1.28 

75 112962 1870 1.66 91.4 1.22 

80 120493 1910 1.59 93.4 1.17 

85 128024 1948 1.52 95.2 1.12 

90 135554 1994 1.47 97.5 1.08 

95 143085 2017 1.41 98.6 1.04 

100 150616 2046 1.36 100.0 1.00 

 

Table 1.  Kdd-Cup 97 data for BNB program  

 

This is truer for neural net models, and is less so for decision 

tree models, especially at the top (first 5-10%) of the lift curve. 

 

(2) As P  increases from 0 to 100%, lift is decreasing at a 

slower than linear rate, i.e.  

  Lift(P,T) <  2 Lift(2P,T) 

(3) We also observe comparing lift at a fixed point for two 

problems with different T, we usually find that the lift is higher 

for problems with smaller T. 

 

 Usually if T1 < T2 , then Lift(P, T1) > Lift(P, T2)  

 

Typically, in literature lift is reported in 5% increments.  Since 

we previously observed that lift at a fixed percentage like 5% 

depends heavily on T, we decided to neutralize the effect of 

varying T by measuring lift at T %.   If the model was perfect, 

than all the TN targets would be concentrated in the initial T% 

of the list, giving this segment the lift of 1/T.  In practice the 

lift at T is usually much lower than that. We have collected 

data from a number of problems from our actual experience in 

building models in telecommunications and financial. 
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4.4  Analysis of Lift  from Real Data 
 

Table 2 shows a few examples from our recent practice.  In 

these cases, lift is computed on a separate validation (25-40% 

of all data) set that was not used in any way for training and 

which has the same proportion of the targets as the full data set. 

 

Since T is usually not a round number, precise lift at T % was 

usually not available and was estimated by linear interpolation 

of lifts at lower and higher percentages, 

 i.e. if  P1 < T < P2, and lift at P1 is L1 and lift at P2 is L2, 

then lift at T is estimated as  

L1 + (L2-L1) (T-P1) / (P2-P1) 

 

For almost all of the problems below the lift was computed in 

1% increments, which reduces lift interpolation error. 

 

We have experimented with neural net packages (Predict from 

Aspen Technology), decision trees (C4.8, C5.0, and CART), 

and several version of Bayesian methods.   In general, lifts are 

comparable within the rough guidelines we are looking, but for 

decision trees and bayesian models the lifts at the top of the list 

are usually smaller than for neural nets.  We explain this by 

decision trees being less sensitive to precise patterns with 

smaller support, which neural nets can pick up and which can 

influence lift at the top of the list.  

 

Since the lift curve is decreasing at less than the linear rate, we 

looked at the relationship between Y = log10(Lift) and X = 

log10(1/T)  (or log10(100/T%) if T% is expressed as a 

percentage) and computed a regression between these terms. 

 

The regression produced a formula (with R 2 = 0.86) 

(6) log10(Lift(T,T)) = -0.0496 + 0.518 log10(1/T)  

 

 

 

 Fig 1. log(1/T) vs log(Lift(T,T) 

 

Figure 1 shows the actual and estimated (using 

formula 6 above) values of log10(Lift(T,T)) for the cases in 

table 2.  The log-log  regression shows a good fit, especially for 

smaller values of lift.    

 

Problem Method N T (%) Lift(T,T) 

ad-980819 Nnet  7091   2.20   5.11  

ad-9810-4245 Nnet  38313   1.51   9.39 

ad-9902-

28757 
Nnet  29375   1.44   11.70 

ad-gm-990224 Nnet  11190   1.60   8.21  

ad-sc-990224 Nnet  4937   1.09   9.13  

bx-mo25     Nnet  1225   22.28   2.18  

bx-mo75     Nnet  1285  20.39  2.17  

Xs-E DT 4636 12.40 2.96 

Xs-T DT 6187 21.15 1.99 

Xs-Z   DT 4636 15.80 2.92 

Xs-H   DT 11709 15.10 2.30 

Xs-BC Nnet 150000 5.70 5.50 

sr1_m31     Nnet  16400   7.07   3.69  

sr1_m35     Nnet  12200  4.67  3.36  

sr1_m37 Nnet 32900 4.33 4.10 

sr2_m03     Nnet  23900   4.59   4.39  

sr2_m05     Nnet  10100   5.22   4.02  

sr3_m03 Nnet 16600 6.05 3.14 

sr3_m05 Nnet 10900 5.94 3.65 

sr3_m10     Nnet  22500   5.47   4.07  

sr4_m26     Nnet  20900   6.27   3.64  

sr4_m32 Nnet 17700 5.84 5.13 

sr5_m04 Nnet 26800 6.13 2.52 

sr5_m06     Nnet  71100   4.43   5.01  

sr5_m07     Nnet  86900   5.01   3.94  

sr5_m08     Nnet  19900 5.67  3.07  

 

Table 2: Lift Statistics from actual Targeted Marketing 

Problems 

 

A simplification of this formula is 

log10(Lift(T,T)) = 0.5 log10(1/T) 

 or   

(7) Lift(T,T) = sqrt(1/T)  

 

We tested the simplified formula on the same cases, with 

results shown in Table 2b.  Where 

 

Estimated lift at T  = sqrt (1/T) = sqrt(100/T%) 
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Error  = Actual  - Estimated Lift 

Relative error = (Error/Actual Lift), in %. 

 

Overall, we see a very good fit, with correlation of actual lift to 

sqrt(1/T) of 0.918.  We also observe that the simplified formula 

is usually within 20% of the actual lift.  This led us to  

 

GPS Lift Rule of Thumb:     

 

For targeted marketing campaigns, a good model 

lift at T, where T is the target rate in the overall 

population, is usually sqrt(1/T) +/- 20%. 

 
 

Figure 2 shows a graph of actual lift at T vs. estimated by the 

sqrt(1/T) formula.    

 

 

 

Figure 2. Actual  lift at T vs Estimated 

4.5 Discussions of possible sources of 

Exceptions  
 

The exceptions to these rules fall into at least four categories.  

First, there are poor modeling methods that produce bad results 

and lower lifts.  

Second, there are classes of problems where either target 

behavior is too random (e.g. predicting lottery numbers) or 

good data is not available.  Almost all of our examples deal 

with predicting customer behavior using previous examples of 

same or related customer behavior, e.g. predicting attrition 

using previous examples of attrition.  We also had experience 

with models that try to predict customer behavior using purely 

external demographic data that is not related to targeted 

product or service and is not frequently updated. In such cases 

lift is typically less than the GPS lift of sqrt (1/T).   

 

Third, we sometimes find a lift that is much higher. A frequent 

cause of very high lift is having information leakers.  Those are 

fields that are functionally dependent on the target behavior but 

reflect customer behavior that happens after or at the same time 

as the target behavior.  For example, suppose we are predicting 

which customers are likely to stop paying the mortgage.  A field 

which records non-payment of insurance would be a leaker, 

since insurance and mortgage are frequently paid on the same 

bill.  

 

Problem Num T% Act. 

 lift(T) 

Est. 

lift(T) 

Error Rel.  

Error 

ad-980819  7091 2.2 5.11 6.74 -1.63 -31.83% 

ad-9810-

4245  

38313 1.52 9.39 8.12 1.27 13.54% 

ad-9902-

28757  

29375 1.44 11.70 8.32 3.38 28.85% 

ad-gm-

990224  

11190 1.61 8.21 7.88 0.33 3.99% 

ad-sc-

990224  

4937 1.09 9.13 9.56 -0.43 -4.71% 

bx-mo25     1225 22.29 2.18 2.12 0.06 2.89% 

bx-mo75     1285 20.39 2.17 2.21 -0.04 -1.84% 

Xs-E 4636 12.4 2.96 2.84 0.12 4.06% 

Xs-T 6187 21.15 1.99 2.17 -0.18 -9.27% 

Xs-Z   4636 15.80 2.92 2.51 0.40 13.84% 

Xs-H   11709 15.10 2.3 2.57 -0.27 -11.89% 

Xs-BC 150000 5.70 5.5 4.19 1.31 23.84% 

sr1_m31     16400 7.073 3.69 3.76 -0.07 -1.84% 

sr1_m35     12200 4.574 3.36 4.67 -1.31 -39.00% 

sr1_m37 32900 4.33 4.1 4.81 -0.71 -17.32% 

sr2_m03     23900 4.59 4.39 4.67 -0.27 -6.14% 

sr2_m05     10100 5.228 4.02 4.37 -0.35 -8.75% 

sr3_m03 16600 6.05 3.14 4.07 -0.93 -29.62% 

sr3_m05 10900 5.94 3.65 4.1 -0.45 -12.33% 

sr3_m10     22500 5.471 4.07 4.27 -0.20 -4.99% 

sr4_m26     20900 6.278 3.64 3.99 -0.34 -9.37% 

sr4_m32 17700 5.84 5.13 4.14 0.99 19.30% 

sr5_m04 26800 6.13 2.52 4.04 -1.52 -60.32% 

sr5_m06     71100 4.43 5.01 4.75 0.26 5.28% 

sr5_m07     86900 5.01 3.94 4.46 -0.52 -13.17% 

sr5_m08 19900 5.67 3.07 4.20 -1.13 -36.81% 

       

Average  7.589 4.513 4.599 -0.085 -7.05% 

StDev  6.220 2.465 1.982 1.026 20.4% 
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Table 2b: Actual and Estimated Lift Statistics  

We found that such leakers are especially prevalent in cross-

sell  or cloning problems, when one tries to model look-alikes 

of customers with product X to find potential new customers 

for X.  Frequently, having product X is related to several other 

fields in data, and those fields manifest themselves by 

contributing to very high lifts.  

 

Finally, there are examples of truly predictable outcomes.  A 

very strong rule like  

if bill is not paid for 90 days,  

then service is terminated with probability 100% 

 

is likely to represent the company policy to terminate service 

for non-paying customers.  Since such rules are usually known, 

data satisfying them should be excluded from modeling. 

5. ESTIMATING THE LIFT CURVE 
 

Here we extend the previous results from a point estimate for a 

lift curve to an approximate formula for the entire curve.  The 

analysis is simplified by looking at CumPHits(P), an 

intermediate measure related to lift, but with nicer 

mathematical properties. CumPHits(P) is defined as the 

cumulative percentage of hits (targets correctly identified) in 

the first P percent of the model-sorted list and is related to lift 

by   

Lift (P) = CumPHits(P) / P  

 

Note: in the rest of this paper P denotes the percentage of the 

list expressed as a fraction (between 0 and 1). From the 

definition of CumPHits, we observe that  

 

CumPHits(0) = 0 

CumPHits(1) = 1 

 

From the observation that Lift(P) is decreasing monotonically 

with P increasing, but  at a slower rate than P, we infer that  

For P increasing from 0 to 1, CumPHits(P) is usually 

monotonically increasing with P 

Finally, based on the previous section, we are looking for a 

formula consistent with  

 

Lift(T)  ~ sqrt(1/T)  = T -0.5 

which is equivalent to 

 CumPHits(T) = T * Lift(T)   ~ T *T
 -0.5  =  sqrt(T) 

We examined a number of lift tables used in the previous 

section and compared regression of P vs CumPHits, P vs 

log(CumPHits), log(P) vs log(CumPHits).   Again, the best 

results were obtained from the log vs log regression.  

Here are the results from performing regression on 15 of the 

problems above (for some problems we were unable to do the 

regression since we did not have the full lift table).   We were 

looking for the regression 

  

(8)   log10(CumPHits) = a + b log10(P)  

 

For the KDD-CUP-97 data (Table 1), log log regression gives  

a = 0.027, b =0.489, and R2= 0.988.   

  

Fig. 3 shows a plot of actual and estimated CumPHits for the 

KDD-CUP-97 data. 

 

Fig. 3 Actual Cum hits% vs. Estimate 

 

Problem          N   T%   a  b  R
2
 

ad-980819  7091 2.2 0.0868 0.5708 0.9592 

ad-9810-4245  38313 1.516 0.0652 0.4466 0.9565 

ad-990223-

28757  

29375 1.443 0.0505 0.3757 0.9287 

ad-gm-990224  11190 1.609 0.0736 0.4365 0.8893 

ad-sc-990224  4937 1.094 0.0061 0.4813 0.9923 

bx-mo25    1225 22.286 0.0782 0.6911 0.9415 

bx-mo75    1285 20.389 0.0740 0.7077 0.9423 

kddcup-97-bnb  150616 1.358 0.0276 0.4891 0.9883 

sr1_m31    16400 7.073 0.0210 0.5234 0.9967 

sr1_m35    12200 4.574 0.0314 0.6271 0.9971 

sr2_m03    23900 4.59 0.0433 0.5388 0.9880 

sr2_m05    10100 5.228 0.0403 0.5344 0.9861 

sr3_m10    22500 5.471 0.0066 0.5230 0.9947 

sr4_m26    20900 6.278 0.0036 0.5115 0.9931 

sr5_m06    71100 4.43 0.0145 0.5017 0.9984 

sr5_m07    86900 5.01 0.0333 0.5746 0.9954 

Average   0.041 0.533  

St. Dev   0.0269 0.088  
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Table 3: Coefficients for regression of log10(CumPHits) vs 

log10(P%) 

 

 

Next, we performed a similar regression for all 16 cases.  The 

results are summarized in   table 3.  

 

Averaging the coefficients over 16 cases we get average R
2 = 

0.97, average a = 0.041 and average b = 0.533.  

 

We also did a further regression analysis of  a and b versus T.  

We do not have enough space to present the details, but we did 

not find a significant relationship between a and T.  We did 

find some correlation between  b and  T , with R2 = 0.66 

(9)  b = 1.13T + 0.467 

substituting this and  a = 0.04 into eq. (8) we get  

 

(10) log10(CumPHits(P,T))  

           = 0.041+(1.13T+0.467)log10(P) 

or  

(11) CumPHits(P,T) = 1.1 P 
0.467+1.13 T 

and  Lift(P) = 1.1 P 
0.467+1.13T 

 / P =  1.1 P 
-0.533+1.13 T 

 

However, for the purpose of getting approximate bounds we 

will use simpler estimates of  a = 0 and b = 0.5, giving us 

 log10 (CumPHits(P)) =   0.5 log10(P ) 

or 

(12)  CumPHits(P)  = sqrt(P)   

and  

Lift(P)  = 1/sqrt(P)  = P 
-0.5

 

 

5.1 Ranges on lift curve 
 

While the estimate Lift(P)  ~ 1/sqrt(P)  produces a reasonably 

close fit, we are also interested in getting a range for the lift.  

From Table 3, we see that the standard deviation on b is about 

0.09 and b is between 0.4 and 0.6 most of the time.  The 

constant term a is small and can be ignored for the purpose of 

initial approximation.  Hence we can estimate 

 

(13) 0.4  log10(P ) < log10 (CumPHits(P)) <  0.6 log10(P ) 

Since P < 1, all logs above are negative, and we can simplify to 

(14)  P 
0.6 < CumPHits(P) < P 

0.4  

or,  dividing the above equation by P 

 

(15)  P 
-0.4  < Lift(P) < P 

-0.6  

 

Fig 4 shows the ranges the actual CumPHits curve for KDD-

CUP-97 data and upper and lower bounds obtained from (15).  

We see that the actual curve generally falls between the 

bounds. 

 

 

Fig 4. CumPHits for KDD-CUP-97 Data 

 

6. ESTIMATING OPTIMAL PROFIT                                                    
 

In section 3 we derived a formula for estimating a profit of a 

campaign.  We apply it to estimate the profit of selecting a 

subset of size N2 = NP, with lift  T2 = T * Lift(P) and get 

  

(16)  Profit(P) = NP (TB*Lift(P) - C)  

 

Next, we substitute the estimate for lift 

Lift(P) ~ 1/sqrt(P)  

derived in previous section, and get an estimate for the profit of 

selecting first P percent of the list: 

 

(17)  Profit(P) ~ NP((TB/ sqrt(P)) - C) =   

 = NC((TB/C) * sqrt(P) - P)  

 

Let K = TB/C.  This profit is maximized when  

(18) F(K,P) = K* sqrt(P) - P  

is maximized, for 0 < P < 1.  
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Fig 5. F(1,P)=(sqrt(P) – P) vs P 

 

Figure 5 shows the curve of  K*sqrt(P) -P for K = 1 

 

We can find the maximum of F(K,P) by finding when its 

derivative is zero.   Since dx
n/dx = nx

n-1, the equation for 

derivative of F(K,P) equal to zero is    

 d F(K,P)/dP = 0.5 K P 
-0.5 - 1 = 0  

or 

 P 
-0.5  = 2/K  

or 

(19) P = (K/2)2 

 

Indeed, in figure 5 we see that the maximum value of the curve 

for K=1 is achieved when P = (K/2)2= 0.25. 

 

When K = TB/C > 2, maximum profit is achieved for P > 1, 

meaning that the best selection is the entire list.  In this case 

modeling to select a subset of the list will not be useful.  

However, when K = TB/C  < 2  , maximum profit is achieved 

for P < 1, meaning that it is useful to perform modeling to 

select a subset of the population.   We can state this condition 

as:  

 

Data Mining Sweet Spot:   

Selecting a subset to contact can increase profit 

when K = TB / C < 2  

 

We can rewrite the Profit formula (17) as  

 

(20) Profit(P) = NC(K* sqrt(P) - P) 

 

By substituting P = (K/2)2  we get   the maximum value 

 

 (21) MaxProfit(N,T,B,C) ~ NC(K*K/2 - (K/2)
2
) =NCK

2
 / 4 

 

This formula gives an expected value of campaign MaxProfit.  

We can also estimate the variability in the profit value by using 

a range estimate for lift, based on (11) 

Lift(P) = P 
-d  , where 0.4 < d < 0.6 

 

Then the profit from selecting a subset P to contact can be 

written as 

 (22)       Profit(P) = NP (TBP 
-d

 -C) 

or, substituting K = TB/C  

 

(23)     Profit(P) =NCP ( K P 
-d

 -1) = NC (K* P 
(1-d)

 -P) 

 

By a similar reasoning,  

F(K,P,d) = K*P 
(1-d)

 -P  ,  where 0< d <1 

 is maximized when  

(1-d) K P -d = 1  or Pd =  (1-d) K  or  

(24)        PMAX(d) = ((1-d)K )1/d  

 

For example, when d=0.4, PMAX(d) = 0.279K
 2.5 ; for d=0.5, 

PMAX(d) = 0.25 K 2  and for d=0.6, PMAX(d) = 0.217K
 1.67 . 

 

Substituting (24) into formula for MaxProfit, we see that the 

estimated maximum profit is  

(25)  MaxProfit(N,T,B,C) =NC (K PMAX(d) 
(1-d)

 - PMAX(d)) =  

   NC PMAX(d)  (K  ( ((1-d)K )
1/d) -d

 - 1) = 

 NC PMAX(d)  (K/ (1-d)K   - 1) =  

NC PMAX(d)  (1/(1-d) - 1) =  

NC PMAX(d)  d /(1-d)  

 

The table below  shows the range of PMAX(d)  and MaxProfit 

for different values of d. 

 

d PMAX(d) Max Profit 

0.4 0.28 K 2.5 0.186 NCK
 2.5 

0.5 0.25 K 2 0.250 NCK
 2 

0.6 0.22 K 1.67 0.326 NCK
 1.67 

 

Table 4. Variation of Maxprofit and PMAX(d) with d 

 

While these are only estimates, we hope that they will be useful 

in providing initial ranges of profit values for different settings. 

 

7. RELATED WORK   
Paper [4] provides an overview of typical issues related to 

modeling for direct marketing. In [5] there is a discussion of 
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maximizing payoffs using different modeling approaches. [1] 

investigates how to maximize lift for a specific decile or 

percentage (e.g. mailing depth for a campaign) of the sorted 

list. [9] investigates comparison of classifiers when dealing 

with skewed class distributions and non-uniform costs, which is 

the case with most applications of targeted marketing. 

 

8. DISCUSSION    
We present heuristics for deciding when to consider applying 

data mining, how to estimate lift, how to model the lift curve 

itself   and how to estimate expected profits. 

 

While we find that the heuristic formulae give a reasonable 

agreement   (see section 5.4 for a discussion of exceptions),  

with the data we looked at from telecom and financial domains 

we need to expand our set of cases. Even though these 

approximations may be valid only for specific domains and 

applications similar to attrition and cross-sell , they may still be 

useful as rule of thumb estimates.  

     

In our discussion we have assumed a sorted, ranked list of 

subscribers where the subsetting may happen by choosing a 

cutoff of model score or choosing a fixed percentage of the list. 

However with methods such as induced rules from a decision 

tree one can consider subsets independent of order, to which 

the rules in section 2 and 3 can still be applied.  

 

9. FURTHER WORK 
 

Apart from expanding the data from different domains and 

evaluating the robustness of the proposed formulae for 

estimating lift, the lift curve and expected profits, another 

direction can be to model the distribution of the target class in 

the whole population and in sub-populations  (may be ordered) 

selected by a model. 

Other interesting avenues include examining the empirical 

distribution of target density function, from which the 

cumulative density function could be obtained by integrating 

and testing these results on additional data. 
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