
LangChain simplifies building applications with language
models through reusable components and pre-built
chains. It makes models data-aware and agentic for more
dynamic interactions. The modular architecture supports
rapid development and customization.

LLMs

An interface for OpenAI GPT-3.5-turbo LLM

from langchain.llms import OpenAI
llm = OpenAI(temperature=0.9)
text = "What do you know about KDnuggets?"
llm(text)

>>> KDnuggets is one of the most popular data science
websites which focusses....

Prompt Templates

LangChain facilitates prompt management and optimization
through the use of prompt templates.

from langchain import PromptTemplate
template = """Question: {question}
Make the answer more engaging by incorporating puns.
Answer: """

prompt = PromptTemplate.from_template(template)

llm(prompt.format(question="Could you provide some
information on the impact of global warming?"))

>>> Global warming is no laughing matter, but that doesn....

Chains

Combining LLMs and prompt template can enhance multi-
step workflows.

from langchain import LLMChain
llm_chain = LLMChain(prompt=prompt, llm=llm)
question = "Could you provide some information on the
impact of global warming?"

llm_chain.run(question)

>>> Global warming is no laughing matter—but it sure is.....

Agents and Tools

Tool refers to a function that performs a specific task, such
as Google Search, database lookup, or Python REPL. Agents
use LLMs to choose a sequence of actions to execute.

from langchain.agents import load_tools
from langchain.agents import initialize_agent

tools = load_tools(["wikipedia", "llm-math"], llm=llm)
agent = initialize_agent(tools, llm, agent="zero-shot-react-
description", verbose=True)

Memory

LangChain simplifies persistent state management in chain
or agent calls with a standard interface

from langchain.chains import ConversationChain
from langchain.memory import
ConversationBufferMemory

conversation = ConversationChain(
 llm=llm, verbose=True,
memory=ConversationBufferMemory()
)

conversation.predict(input="How can one overcome
anxiety?")

>>> To overcome anxiety, it may be helpful to focus on the....

conversation.predict(input="Tell me more..")

>>> To be mindful of the present, it can be helpful to pra.....

Document Loaders

Vector Stores

One common method for storing and searching
unstructured data is to embed it as vectors, then embed
queries and retrieve the most similar vectors.

from langchain.embeddings.openai import
OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS

Text Splitter
text_splitter = CharacterTextSplitter(chunk_size=1000,
chunk_overlap=0)
documents = text_splitter.split_documents(raw_document)

Vector Store
db = FAISS.from_documents(documents,
OpenAIEmbeddings())

Similarity Search
query = "When was Gregory born?"
docs = db.similarity_search(query)
print(docs[0].page_content)

>>> Gregory I. Piatetsky-Shapiro (born 7 April 1958) is a data
scientist and the co-founder of the KDD conferences.....

agent.run("Can you tell me the distance between Earth and
the moon? And could you please convert it into miles?
Thank you.")

>>> Action: Wikipedia
Action Input: Earth-moon distance
Action: Calculator
Action Input: 385400/1.609
Final Answer: The distance between Earth and the Moon is
approximately 239,527.66 miles.

Subscribe to KDnuggets News

LangChain

Visit KDnuggets.com for more
cheatsheets and additional
learning resources.

Cheat Sheet

Abid Ali Awan | 2023

An interface for HugginFace LLM

from langchain import HuggingFaceHub
llm = HuggingFaceHub(repo_id="togethercomputer/LLaMA-
2-7B-32K", model_kwargs={"temperature":0,
"max_length":64})

llm("How old is KDnuggets?")

>>> KDnuggets was founded in 1997, making it 23 years old.

By combining language models with your own text data, you
can answer personalized queries. You can load CSV,
Markdown, PDF, and more.

from langchain.document_loaders import TextLoader

raw_document =
TextLoader("/work/data/Gregory.txt").load()

A retriever is an interface that returns documents based on
an unstructured query. When combined with LLM, it
generates a natural response instead of simply displaying
the text from the document.

from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI

llm = ChatOpenAI(model_name="gpt-3.5-turbo",
temperature=0)
qa_chain =
RetrievalQA.from_chain_type(llm,retriever=db.as_retriever(
))
qa_chain({"query": "When was Gregory born?"})

>>> {'query': 'When was Gregory born?',
 'result': 'Gregory Piatetsky-Shapiro was born on April 7,
1958.'}

https://www.kdnuggets.com/
https://www.kdnuggets.com/news/subscribe.html
https://python.langchain.com/docs/get_started/introduction.html
https://python.langchain.com/docs/get_started/introduction.html
https://python.langchain.com/docs/get_started/introduction.html

