KDnuggets Home » News » 2017 » May » Tutorials, Overviews » How to Learn Machine Learning in 10 Days ( 17:n17 )

Plat Blog, May 2017How to Learn Machine Learning in 10 Days


10 days may not seem like a lot of time, but with proper self-discipline and time-management, 10 days can provide enough time to gain a survey of the basic of machine learning, and even allow a new practitioner to apply some of these skills to their own project.



Editor's note: This standout answer was from a question posed to author Sebastian Raschka during his Quora Session from October 2016. If you have not checked this session out in full, I suggest you consider doing so.

ML in 10 days?!?

10 days? Hm, that’s definitely a challenging task :). However, I think that 10 days is also definitely a time frame where you can get a pretty good overview of machine learning field and maybe get started to apply some techniques to your problems.

After reading an introduction to the 3 different subfields (supervised learning, unsupervised learning, and reinforcement learning). I would probably spend the time on simple (yet useful) algorithms that are representative of these fields (and maybe save reinforcement learning for later). E.g., Simple linear regression and Ridge Regression for regression analysis, logistic regression and k-nearest neighbors for classification, and k-means and hierarchical clustering for clustering tasks. Once you understand the goals of each algorithm and how they try to solve a particular problem, it is fairly easy to add more algorithms and approaches to your repertoire.

However, besides algorithms, it is also important to know how to prepare your data (feature selection, transformation, and compression) and how to evaluate your models. Maybe, as a starter, you could check out our Machine Learning in scikit-learn tutorial at SciPy 2016. It’s approx. 6 hours and summarizes most of the basics while introducing the scikit-learn library, which can come in handy for implementation and further studies:

If you are interested in understanding the math behind the algorithms, Andrew Ng’s cousera course Machine Learning - Stanford University | Coursera (and my book) provide a gentle introduction, but I realize that this is probably not within the scope of 10 days :).

Original. Reposted with permission.

Related: