- Feature selection by random search in Python - Aug 6, 2019.
Feature selection is one of the most important tasks in machine learning. Learn how to use a simple random search in Python to get good results in less time.
Tags: Collinearity, Cross-validation, Feature Selection, Python, Random
- A Gentle Introduction to Noise Contrastive Estimation - Jul 25, 2019.
Find out how to use randomness to learn your data by using Noise Contrastive Estimation with this guide that works through the particulars of its implementation.
Tags: Deep Learning, Logistic Regression, Neural Networks, Noise, Random, Sampling, word2vec
- Are Vectorized Random Number Generators Actually Useful? - Aug 28, 2018.
I reported that you can multiply the speed of common (fast) random number generators such as PCG and xorshift128+ by a factor of three or four by vectorizing them using SIMD instructions. Is this actually useful in practice?
Tags: Parallelism, Programming, Random, Randomization
- Chaos is needed to keep us smart with Machine Learning - Jul 20, 2018.
This post analyses why the chaotic nature of our lives can be used to improve machine learning algorithms.
Tags: AI, Machine Learning, Random
- Pitfalls in pseudo-random number sampling at scale with Apache Spark - Jun 27, 2017.
Large scale simulation of random number generation is possible with today’s high speed & scalable distributed computing frameworks. Let’s understand how it can be achieved using Apache Spark.
Tags: Apache Spark, GitHub, Random, RDD
- The Surprising Complexity of Randomness - Jun 15, 2017.
The reason we have pseudorandom numbers is because generating true random numbers using a computer is difficult. Computers, by design, are excellent at taking a set of instructions and carrying them out in the exact same way, every single time.
Tags: Complexity, Probability, Random, Randomization
- Embrace the Random: A Case for Randomizing Acceptance of Borderline Papers - May 16, 2016.
A case for using randomization in the selection of borderline academic papers, a particular use case which has parallels with many other possible scenarios.
Tags: Academics, ICML, NIPS, Random, Randomization
- Random vs Pseudo-random – How to Tell the Difference - Oct 26, 2015.
Statistical know-how is an integral part of Data Science. Explore randomness vs. pseudo-randomness in this explanatory post with examples.
Tags: Correlation, Random
- Surprising Random Correlations - May 14, 2015.
An interesting demo showing how easy it is to find surprising correlations in real data. Is German unemployment rate related to Apple Stock? Is 10-year Treasury rate related to price of Red Winter Wheat? You will be surprised.
Tags: Correlation, Overfitting, Quandl, Random
- Year in Review: Top KDnuggets tweets in September - Dec 30, 2014.
One pattern is random, other is machine-generated. Can you guess which?; 14 Awesome (and Free) #DataScience Books; Dilbert 20 funniest cartoons on #BigData, data mining, privacy; Watch: Statistical, Machine learning with R, great 15 hour online course.
Tags: Data Mining Books, Dilbert, R, Random
- Top KDnuggets tweets, Sep 19-21: Dilbert funniest cartoons on #BigData, data mining; Guess which pattern is random - Sep 22, 2014.
Guess which pattern is random, which machine-generated? Dilbert 20 funniest cartoons on #BigData, data mining, privacy; Data Scientist Cartoon; Neural Networks and Deep Learning, free online book (draft).
Tags: Cartoon, Deep Learning, Dilbert, Free ebook, Neural Networks, Random