Machine Learning Classic: Parsimonious Binary Classification Trees

Get your hands on a classic technical report outlining a three-step method of construction binary decision trees for multiple classification problems.



By Leo Breiman and Charles J. Stone.

A three-step method of construction binary decision trees for multiple classification problems is presented. First a splitting rule is defined in terms of a generalization of Gini’s index of diversity. Next the optimal termination rule is found relative to a criterion which penalizes both misclassifications and complex trees (i.e., those having many terminal nodes. The tree thus obtained depends on a complexity parameter which, in the final step is selected by data-splitting or cross-validation.


Decision tree example



Click to view PDF


Get the FREE ebook 'KDnuggets Artificial Intelligence Pocket Dictionary' along with the leading newsletter on Data Science, Machine Learning, AI & Analytics straight to your inbox.

By subscribing you accept KDnuggets Privacy Policy


Get the FREE ebook 'KDnuggets Artificial Intelligence Pocket Dictionary' along with the leading newsletter on Data Science, Machine Learning, AI & Analytics straight to your inbox.

By subscribing you accept KDnuggets Privacy Policy

Get the FREE ebook 'KDnuggets Artificial Intelligence Pocket Dictionary' along with the leading newsletter on Data Science, Machine Learning, AI & Analytics straight to your inbox.

By subscribing you accept KDnuggets Privacy Policy

No, thanks!