Topics: Coronavirus | AI | Data Science | Deep Learning | Machine Learning | Python | R | Statistics

KDnuggets Home » News » 2020 » Oct » News, Education » Machine Learning’s Greatest Omission: Business Leadership ( 20:n40 )

Machine Learning’s Greatest Omission: Business Leadership


Eric Siegel's business-oriented vendor-neutral three course machine learning series is designed to fulfill the unmet needs of the learner, delivering material critical for both techies and business leaders.



Sponsored Post.

By Eric Siegel

Image

 

In this article, I identify extraordinary unmet learner needs and address them with a free offering: my business-oriented machine learning course series, which is designed to fulfill those needs – three vendor-neutral courses that deliver material critical for both techies and business leaders. If you or members of your team would benefit from taking the course series, see how to access it for free here.

Machine learning. Your team needs it, your boss demands it, and your career loves it. After all, LinkedIn places it as one of the top few “Skills Companies Need Most” and as the very top emerging job in the U.S. 

But today's number-crunching craze tends to, tragically, overlook one key point: Of all the ingredients that are key to success with machine learning, the one that’s most often missing isn’t about technology or data. It’s about leadership. Many business leaders do know that machine learning can't succeed in optimizing operations without a proven management process guiding the project – but data scientists tend to focus on one thing and one thing only: hands-on practice with analytics. 

Now, it's true that you learn best from doing – but the number crunching is only half of what needs to get done. There's also a business-side leadership process critical to machine learning's value-driven deployment, and data scientists must ramp up on it just as well as business leaders. Whether you'll participate on the business or tech side of a machine learning project, the business-side skills of ML are essential, pertinent know-how. They're needed in order to ensure the core technology works within – and successfully produces value for – business operations. 

A main, central portion of my three-course series, "Machine Learning for Everyone" (now live and free to access on Coursera), addresses this need. First, allow me to tell you about the overall course series: It will guide you and your team to lead or participate in the end-to-end implementation of machine learning. It's an expansive curriculum that's accessible to business-level learners and yet vital to techies as well. It covers both the state-of-the-art techniques and the business-side best practices.

By covering the business-side requirements, unlike most machine learning courses, "Machine Learning for Everyone" prepares you to avoid the most common management mistake that derails machine learning projects: jumping straight into the number-crunching before establishing and planning for a path to operational deployment. 

In particular, the second of three courses, "Launching Machine Learning: Delivering Operational Success with Gold Standard ML Leadership", focuses entirely on the business side. After this course, you will be able to: 

  • Lead ML: Manage a machine learning project, from the generation of predictive models to their launch. 
  • Apply ML: Identify the opportunities where machine learning can improve marketing, sales, financial credit scoring, insurance, fraud detection, and much more. 
  • Plan ML: Determine the way in which machine learning will be operationally integrated and deployed, and the staffing and data requirements to get there.  
  • Greenlight ML: Forecast the effectiveness of a machine learning project and then internally sell it, gaining buy-in from your colleagues. 
  • Prep data for ML: Oversee the data preparation, which is directly informed by business priorities. 
  • Evaluate ML: Report on the performance of predictive models in business terms, such as profit and ROI. 
  • Regulate ML: Manage ethical pitfalls, such as when predictive models reveal sensitive information about individuals, including whether they're pregnant, will quit their job, or may be arrested. 

The first module of this course dives deeply into the business applications of machine learning – for marketing, financial services, fraud detection and more. We'll illustrate the value delivered for these domains by way of case studies and detailed examples. And we'll precisely measure the performance of the predictive models themselves, focusing on model lift, a predictive multiplier that tells you the improvement achieved by a model. 

The second module of this course covers scoping, greenlighting, and managing machine learning initiatives.  Launching machine learning is as much a management endeavor as a technical one – its success relies on a very particular business leadership practice. This module will demonstrate that practice, guiding you to lead the end-to-end implementation of machine learning. Here's its outline of topics: 

Leadership process: How to manage machine learning projects

  • Project management overview
  • The six steps for running a ML project
  • Running and iterating on the process steps
  • How long a machine learning project takes
  • Refining the prediction goal

Project scoping and greenlighting

  • Where to start – picking your first ML project
  • Strategic objectives and key performance indicators
  • Personnel – staffing your machine learning team
  • Sourcing the staff for a machine learning project
  • Greenlighting: Internally selling a machine learning initiative
  • More tips for getting the green light

And finally, the third module of this second course covers the data requirements – which needs very much to be informed by business-side considerations – and the fourth and last module covers more business metrics – including a fun-tastic fallacy that spreads misinformation all across the Internet – and tackles some critical, alarming topics in machine learning ethics.

Those who are more a hands-on technical quant than a business leader will find this curriculum to be a rare opportunity to ramp up on the business side, since technical machine learning trainings don’t usually go there. But data wonks must know this: The soft skills are often the hard ones. 

To learn more, check out the details of my machine learning course series (and how to access it for free on Coursera) – or jump directly to Course 2 of 3, since that’s what I focused on in this article.

See also: Seven Reasons Budding Data Scientists Need a Machine Learning Course That’s Not Hands-On

ImageEric Siegel, Ph.D., is a leading consultant and former Columbia University professor who makes machine learning understandable and captivating. He is the founder of the long-running Predictive Analytics World and the Deep Learning World conference series, which have served more than 17,000 attendees since 2009, the instructor of the end-to-end, business-oriented Coursera specialization Machine learning for Everyone, a popular speaker who's been commissioned for more than 100 keynote addresses, and executive editor of The Machine Learning Times. He authored the bestselling Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die, which has been used in courses at more than 35 universities, and he won teaching awards when he was a professor at Columbia University, where he sang educational songs to his students. Eric also publishes op-eds on analytics and social justice.


Sign Up

By subscribing you accept KDnuggets Privacy Policy