Git is a must-have skill for data scientists. Maintaining your development work within a version control system is absolutely necessary to have a collaborative and productive working environment with your colleagues. This guide will quickly start you off in the right direction for contributing to an existing project at your organization.
Although the role of the data scientist is still evolving, data remains at its core. Setting the right expectations for what you will do as a data scientist is important, and, to be sure, knowing the tools of data engineering will get yourself ready for the real world.
Statistics is a building block of data science. If you are working or plan to work in this field, then you will encounter the fundamental concepts reviewed for you here. Certainly, there is much more to learn in statistics, but once you understand these basics, then you can steadily build your way up to advanced topics.
Learning all you need to learn about data science is only part of the adventure. Landing that first job is another. While it might take a while to get your foot into the door, there are several key efforts you can do to shorten this time as much as possible.
If you are trying to find your first path into a Data Science career, then demonstrating the quality of your skills can be the greatest hurdle. While many standard projects exist for anyone to complete, creating an original data-driven project that attempts to solve some challenge is worth so much more. A good Data Scientist is one that can solve data-related questions, and a great Data Scientist poses original data-related questions and then solves.