Benjamin Obi Tayo, Ph.D. is a Physicist, Data Science Educator, and Writer, as well as the Owner of DataScienceHub. Previously, Benjamin was teaching Engineering and Physics at U. of Central Oklahoma, Grand Canyon U., and Pittsburgh State U.
Understanding your data first is a key step before going too far into any data science project. But, you can't fully understand your data until you know the right questions to ask of it.
Many resources exist for the self-study of data science. In our modern age of information technology, an enormous amount of free learning resources are available to anyone, and with effort and dedication, you can master the fundamentals of data science.
Making your big break into the data science profession means standing out to potential employers in a crowd of tough competition. An important way to showcase your skills and experience is through the presentation of a portfolio. Following these recommendations for developing your portfolio will help you network effectively and stay on top of an ever-changing field.
With so much to learn and so many advancements to follow in the field of data science, there are a core set of foundational concepts that remain essential. Twenty of these ideas are highlighted here that are key to review when preparing for a job interview or just to refresh your appreciation of the basics.
You are intrigued by this exciting new field of Data Science, and you think you want in on the action. The demand remains very high and the salaries are strong. Before taking the leap onto this path, these questions will help you evaluate if you are ready for the challenges and opportunities.
Preparing to interview for a Data Scientist position takes preparation and practice, and then it could all boil down to a final review of your skills. Based on personal experience, these tips on how to approach such a review will help you excel in the coding challenge project for your next interview.
As a novice or seasoned Data Scientist, your work depends on the data, which is rarely perfect. Properly handling the typical issues with data quality and completeness is crucial, and we review how to avoid six of these common scenarios.
Learning data science means learning the hard skills of statistics, programming, and machine learning. To complete your training, a broader set of soft skills will round out your capabilities as an effective and successful professional Data Scientist.
Most massive open online courses are too superficial because they offer introductory-level courses. For in-depth knowledge, more is needed to increase your knowledge and expertise after establishing a foundation.