- Top 10 Must-Know Machine Learning Algorithms for Data Scientists – Part 1 - Apr 22, 2021.
New to data science? Interested in the must-know machine learning algorithms in the field? Check out the first part of our list and introductory descriptions of the top 10 algorithms for data scientists to know.
Algorithms, Bagging, Data Science, Data Scientist, Decision Trees, Linear Regression, Machine Learning, SVM, Top 10
- Machine Learning – it’s all about assumptions - Feb 11, 2021.
Just as with most things in life, assumptions can directly lead to success or failure. Similarly in machine learning, appreciating the assumed logic behind machine learning techniques will guide you toward applying the best tool for the data.
Algorithms, Decision Trees, K-nearest neighbors, Linear Regression, Logistic Regression, Machine Learning, Naive Bayes, SVM, XGBoost
All Machine Learning Algorithms You Should Know in 2021 - Jan 4, 2021.
Many machine learning algorithms exits that range from simple to complex in their approach, and together provide a powerful library of tools for analyzing and predicting patterns from data. If you are learning for the first time or reviewing techniques, then these intuitive explanations of the most popular machine learning models will help you kick off the new year with confidence.
Algorithms, Decision Trees, Explained, Gradient Boosting, K-nearest neighbors, Machine Learning, Naive Bayes, Regression, SVM
How to Explain Key Machine Learning Algorithms at an Interview - Oct 19, 2020.
While preparing for interviews in Data Science, it is essential to clearly understand a range of machine learning models -- with a concise explanation for each at the ready. Here, we summarize various machine learning models by highlighting the main points to help you communicate complex models.
Algorithms, Decision Trees, Interview Questions, K-nearest neighbors, Machine Learning, Naive Bayes, Regression, SVM
- KDnuggets™ News 20:n12, Mar 25: 24 Best (and Free) Books To Understand Machine Learning; Coronavirus Daily Change and Poll Analysis; 9 lessons learned during 1st year as a Data Scientist - Mar 25, 2020.
Read our analysis of coronavirus data and poll results; Use your time indoors to learn with 24 best and free books to understand Machine Learning; Study the 9 important lessons from the first year as a Data Scientist; Understand the SVM, a top ML algorithm; check a comprehensive list of AI resources for online learning; and more.
Career Advice, Coronavirus, Free ebook, Machine Learning, SVM, Time Series
A Top Machine Learning Algorithm Explained: Support Vector Machines (SVM) - Mar 18, 2020.
Support Vector Machines (SVMs) are powerful for solving regression and classification problems. You should have this approach in your machine learning arsenal, and this article provides all the mathematics you need to know -- it's not as hard you might think.
Algorithms, Explained, Linear Algebra, Machine Learning, Support Vector Machines, SVM
- A Friendly Introduction to Support Vector Machines - Sep 12, 2019.
This article explains the Support Vector Machines (SVM) algorithm in an easy way.
Algorithms, Explained, Machine Learning, Support Vector Machines, SVM
- Common Machine Learning Obstacles - Sep 9, 2019.
In this blog, Seth DeLand of MathWorks discusses two of the most common obstacles relate to choosing the right classification model and eliminating data overfitting.
Cross-validation, Decision Trees, Logistic Regression, Machine Learning, MathWorks, Overfitting, SVM
- How can quantum computing be useful for Machine Learning - Apr 12, 2019.
We investigate where quantum computing and machine learning could intersect, providing plenty of use cases, examples and technical analysis.
Machine Learning, Quantum Computing, SVM
- Supervised Learning: Model Popularity from Past to Present - Dec 28, 2018.
An extensive look at the history of machine learning models, using historical data from the number of publications of each type to attempt to answer the question: what is the most popular model?
Decision Trees, Deep Learning, Linear Regression, Logistic Regression, Machine Learning, Neural Networks, SVM

Journey to Machine Learning – 100 Days of ML Code - Sep 7, 2018.
A personal account from Machine Learning enthusiast Avik Jain on his experiences of #100DaysOfMLCode, a challenge that encourages beginners to code and study machine learning for at least an hour, every day for 100 days.
GitHub, K-nearest neighbors, Machine Learning, Python, SVM
Ten Machine Learning Algorithms You Should Know to Become a Data Scientist - Apr 11, 2018.
It's important for data scientists to have a broad range of knowledge, keeping themselves updated with the latest trends. With that being said, we take a look at the top 10 machine learning algorithms every data scientist should know.
Pages: 1 2
Algorithms, Clustering, Convolutional Neural Networks, Decision Trees, Machine Learning, Neural Networks, PCA, Regression, SVM
The Value of Semi-Supervised Machine Learning - Jan 17, 2018.
This post shows you how to label hundreds of thousands of images in an afternoon. You can use the same approach whether you are labeling images or labeling traditional tabular data (e.g, identifying cyber security atacks or potential part failures).
Data Preparation, Image Recognition, Machine Learning, SVM
Understanding Machine Learning Algorithms - Oct 3, 2017.
Machine learning algorithms aren’t difficult to grasp if you understand the basic concepts. Here, a SAS data scientist describes the foundations for some of today’s popular algorithms.
Algorithms, Ensemble Methods, Gradient Boosting, Machine Learning, Neural Networks, Predictive Analytics, random forests algorithm, SVM
- Support Vector Machine (SVM) Tutorial: Learning SVMs From Examples - Aug 28, 2017.
In this post, we will try to gain a high-level understanding of how SVMs work. I’ll focus on developing intuition rather than rigor. What that essentially means is we will skip as much of the math as possible and develop a strong intuition of the working principle.
Pages: 1 2 3
Algorithms, Machine Learning, Statsbot, Support Vector Machines, SVM
- How to squeeze the most from your training data - Jul 27, 2017.
In many cases, getting enough well-labelled training data is a huge hurdle for developing accurate prediction systems. Here is an innovative approach which uses SVM to get the most from training data.
Data Analysis, Data Preparation, Machine Learning, Support Vector Machines, SVM, Training Data
- What is a Support Vector Machine, and Why Would I Use it? - Feb 23, 2017.
Support Vector Machine has become an extremely popular algorithm. In this post I try to give a simple explanation for how it works and give a few examples using the the Python Scikits libraries.
Python, scikit-learn, Support Vector Machines, SVM, Yhat
- The Evolution of Classification, Oct 19, Oct 26 Webinars - Oct 7, 2016.
Join us for this two part webinar series on the Evolution of Classification, presented by Senior Scientist, Mikhail Golovnya.
Classification, Logistic Regression, random forests algorithm, Salford Systems, SVM
- Data Mining History: The Invention of Support Vector Machines - Jul 4, 2016.
The story starts in Paris in 1989, when I benchmarked neural networks against kernel methods, but the real invention of SVMs happened when Bernhard decided to implement Vladimir Vapnik algorithm.
History, Isabelle Guyon, Support Vector Machines, SVM, Vladimir Vapnik
- Dealing with Unbalanced Classes, SVMs, Random Forests®, and Decision Trees in Python - Apr 29, 2016.
An overview of dealing with unbalanced classes, and implementing SVMs, Random Forests, and Decision Trees in Python.
Pages: 1 2 3
Balancing Classes, Decision Trees, Precision, Python, Recall, Support Vector Machines, SVM, Unbalanced
When Does Deep Learning Work Better Than SVMs or Random Forests®? - Apr 22, 2016.
Some advice on when a deep neural network may or may not outperform Support Vector Machines or Random Forests.
Advice, Deep Learning, random forests algorithm, Support Vector Machines, SVM
- Does Deep Learning Come from the Devil? - Oct 9, 2015.
Deep learning has revolutionized computer vision and natural language processing. Yet the mathematics explaining its success remains elusive. At the Yandex conference on machine learning prospects and applications, Vladimir Vapnik offered a critical perspective.
Berlin, Deep Learning, Machine Learning, Support Vector Machines, SVM, Vladimir Vapnik, Yandex, Zachary Lipton
- Decision Boundaries for Deep Learning and other Machine Learning classifiers - Jun 15, 2015.
H2O, one of the leading deep learning framework in python, is now available in R. We will show how to get started with H2O, its working, plotting of decision boundaries and finally lessons learned during this series.
Decision Boundaries, Deep Learning, H2O, Machine Learning, SVM
- Top 10 R Packages to be a Kaggle Champion - Apr 21, 2015.
Kaggle top ranker Xavier Conort shares insights on the “10 R Packages to Win Kaggle Competitions”.
Kaggle, R Packages, random forests algorithm, Success, SVM, Text Analysis, Xavier Conort
- Machine Learning 201: Does Balancing Classes Improve Classifier Performance? - Apr 9, 2015.
The author investigates if balancing classes improves performance for logistic regression, SVM, and Random Forests, and finds where it helps the performance and where it does not.
Pages: 1 2 3
Balancing Classes, random forests algorithm, Regression, SVM
- 7 common mistakes when doing Machine Learning - Mar 7, 2015.
In statistical modeling, there are various algorithms to build a classifier, and each algorithm makes a different set of assumptions about the data. For Big Data, it pays off to analyze the data upfront and then design the modeling pipeline accordingly.
Pages: 1 2
Machine Learning, Mistakes, Overfitting, Regression, SVM
- Top /r/MachineLearning posts, January - Feb 13, 2015.
Talking Machines, SVM lectures, a new Stanford statistical learning online course, and a listing of open-source datasets top the most popular Reddit posts on /r/MachineLearning for the month of January.
Geoff Hinton, Online Education, Open Data, Podcast, Reddit, Statistical Learning, SVM, Yann LeCun, Yoshua Bengio
- Top /r/MachineLearning posts, Jan 11-17 - Jan 18, 2015.
SVMs, open source datasets, Bayesian decision theory, game AI, and deep learning visualizations are all featured in the past week's top /r/MachineLearning posts.
AI, Bayesian, Datasets, Deep Learning, Games, Grant Marshall, Machine Learning, Open Source, Reddit, SVM, Visualization
- Top KDnuggets tweets, Dec 7-14: Google new CAPTCHA trains #AI; Random Forests, SVM give best results - Dec 15, 2014.
Which one is the bunny? Google new CAPTCHA bot-trap trains #AI; O'Reilly Data Scientist Salary and Tools Survey 2014; Microsoft brings the power of #MachineLearning to Office Online; 10 Data Science Newsletters to Subscribe to.
CAPTCHA, Data Science Skills, Google, Machine Learning, Microsoft, random forests algorithm, Salary, SVM
- Top KDnuggets tweets, Nov 26-28: Facebook AI team hires Vladimir Vapnik, father of SVM - Nov 29, 2014.
Facebook's #AI team hires Vladimir Vapnik, father of popular #SVM algorithm; Starting data analysis/wrangling with R: Things I wish I'd been told; How to deal with missing values - advice from @Knime #DataMining; Understanding The Various Sources of #BigData - Infographic.
Facebook, Knime, Missing Values, R, SVM, Vladimir Vapnik
- Top KDnuggets tweets, Sep 26-28: Any data scientist worth their salary will say you should start with a question - Sep 29, 2014.
CNN embarrassing lack of "Data Quality" - this #Scotland Independence poll adds; Statistical & Machine learning with R; Any data scientist worth their salary will say you should start with a question; Automotive Customer Churn Prediction using SVM and SOM.
Churn, Data Quality, Jake Porway, SOM, SVM