-
Building Surveillance System Using USB Camera and Wireless-Connected Raspberry Pi
Read this post to learn how to build a surveillance system using a USB camera plugged into Raspberry Pi (RPi) which is connected a PC using its wireless interface.
-
Building an Image Classifier Running on Raspberry Pi
The tutorial starts by building the Physical network connecting Raspberry Pi to the PC via a router. After preparing their IPv4 addresses, SSH session is created for remotely accessing of the Raspberry Pi. After uploading the classification project using FTP, clients can access it using web browsers for classifying images.
-
Intuitive Ensemble Learning Guide with Gradient Boosting
This tutorial discusses the importance of ensemble learning with gradient boosting as a study case.
-
Genetic Algorithm Implementation in Python
This tutorial will implement the genetic algorithm optimization technique in Python based on a simple example in which we are trying to maximize the output of an equation.
-
Beginners Ask “How Many Hidden Layers/Neurons to Use in Artificial Neural Networks?”
By the end of this article, you could at least get the idea of how these questions are answered and be able to test yourself based on simple examples.
-
Packaging and Distributing Your Python Project to PyPI for Installation Using pip
This tutorial will explain the steps required to package your Python projects, distribute them in distribution formats using steptools, upload them into the Python Package Index (PyPI) repository using twine, and finally installation using Python installers such as pip and conda.
-
Complete Guide to Build ConvNet HTTP-Based Application using TensorFlow and Flask RESTful Python API
In this tutorial, a CNN is to be built, and trained and tested against the CIFAR10 dataset. To make the model remotely accessible, a Flask Web application is created using Python to receive an uploaded image and return its classification label using HTTP.
-
Building Convolutional Neural Network using NumPy from Scratch
In this article, CNN is created using only NumPy library. Just three layers are created which are convolution (conv for short), ReLU, and max pooling.
-
Derivation of Convolutional Neural Network from Fully Connected Network Step-By-Step
What are the advantages of ConvNets over FC networks in image analysis? How is ConvNet derived from FC networks? Where the term convolution in CNNs came from? These questions are to be answered in this article.
-
Introduction to Optimization with Genetic Algorithm
This article gives a brief introduction about evolutionary algorithms (EAs) and describes genetic algorithm (GA) which is one of the simplest random-based EAs.
|