# Tag: numpy (20)

**Unleash a faster Python on Your Data.**- May 10, 2018.

Get real performance results and download the free Intel(r) Distribution for Python that includes everything you need for blazing-fast computing, analytics, machine learning, and more.**WTF is a Tensor?!?**- May 7, 2018.

A tensor is a container which can house data in N dimensions, along with its linear operations, though there is nuance in what tensors technically are and what we refer to as tensors in practice.**Boost your data science skills. Learn linear algebra.**- May 3, 2018.

The aim of these notebooks is to help beginners/advanced beginners to grasp linear algebra concepts underlying deep learning and machine learning. Acquiring these skills can boost your ability to understand and apply various data science algorithms.**KDnuggets™ News 18:n18, May 2: Blockchain Explained in 7 Python Functions; Data Science Dirty Secret; Choosing the Right Evaluation Metric**- May 2, 2018.

Also: Building Convolutional Neural Network using NumPy from Scratch; Data Science Interview Guide; Implementing Deep Learning Methods and Feature Engineering for Text Data: The GloVe Model; Jupyter Notebook for Beginners: A Tutorial**Building Convolutional Neural Network using NumPy from Scratch**- Apr 26, 2018.

In this article, CNN is created using only NumPy library. Just three layers are created which are convolution (conv for short), ReLU, and max pooling.**Why You Should Start Using .npy Files More Often**- Apr 3, 2018.

In this article, we demonstrate the utility of using native NumPy file format .npy over CSV for reading large numerical data set. It may be an useful trick if the same CSV data file needs to be read many times.**Top KDnuggets tweets, Jan 3-9: A collection of Jupyter notebooks NumPy, Pandas, matplotlib, basic #Python #MachineLearning**- Jan 10, 2018.

Artificial General Intelligence (AGI) in less than 50 years; Top KDnuggets tweets: 10 Free Must-Read Books for #MachineLearning and #DataScience; The Art of Learning #DataScience; Supercharging Visualization with Apache Arrow; Docker for #DataScience**Why You Should Forget ‘for-loop’ for Data Science Code and Embrace Vectorization**- Nov 29, 2017.

Data science needs fast computation and transformation of data. NumPy objects in Python provides that advantage over regular programming constructs like for-loop. How to demonstrate it in few easy lines of code?**Getting Started with Python for Data Analysis**- Jul 5, 2017.

A guide for beginners to Python for getting started with data analysis.

**Working With Numpy Matrices: A Handy First Reference**- Mar 10, 2017.

This introductory tutorial does a great job of outlining the most common Numpy array creation and manipulation functionality. A good post to keep handy while taking your first steps in Numpy, or to use as a handy reminder.**Top KDnuggets tweets, Dec 7-13: Want to learn Numpy? A Github repo of Numpy learning exercises**- Dec 14, 2016.

Also Deep Learning Roadmap: "Which paper should I start reading from?"; Free ebooks: #MachineLearning with #Python and Practical Data Analysis; Daily plan for studying to become a Google software engineer.**2 must-have tools for blazing fast Python performance**- Sep 15, 2016.

Intel has two must-have, highly optimized tools to help you get faster performance out of the box - with the least amount of effort.**Deep Residual Networks for Image Classification with Python + NumPy**- Jul 7, 2016.

This post outlines the results of an innovative Deep Residual Network implementation for Image Classification using Python and NumPy.**Top KDnuggets tweets, Jun 1-7: “Deep” vs “Regular” Machine Learning; Introduction to Scientific Python – NumPy**- Jun 8, 2016.

How to Build Your Own #DeepLearning Box; What is the Difference Between #DeepLearning and "Regular" #MachineLearning? Data Science of #Variable Selection: A Review; Why choose #Python for #MachineLearning?**KDnuggets™ News 16:n20, Jun 8: R, Python Duel for 1st Place; “Regular” Machine Learning vs Deep Learning; Numpy Intro**- Jun 8, 2016.

R, Python Duel As Top Analytics, Data Science software; What is the Difference Between Deep Learning and "Regular" Machine Learning; An Introduction to Scientific Python; How to Build Your Own Deep Learning Box**An Introduction to Scientific Python (and a Bit of the Maths Behind It) – NumPy**- Jun 1, 2016.

An introductory overview of NumPy, one of the foundational aspects of Scientific Computing in Python, along with some explanation of the maths involved.**Top New Features in Orange 3 Data Mining Platform**- Dec 10, 2015.

The main technical advantage of Orange 3 is its integration with NumPy and SciPy libraries. Other improvements include reading online data, working through queries for SQL and pre-processing.**Top /r/MachineLearning Posts, June: Neural Network Generated Images, Free Data Science Books, Super Mario World**- Jul 2, 2015.

Generating images with neural networks, free data science books, machine learning for playing Mario, implementing neural networks in Python, and video generation based on terms were all covered this month on /r/MachineLearning.**Top KDnuggets tweets, Jun 9-10: Numeric Matrix Manipulation: Cheat Sheet; The First Law of Data Science**- Jun 11, 2014.

Also - The First Law of Data Science: Do Umbrellas Cause Rain? ; Tell Your Kids to be Data Scientists - Not Doctors; DLib Library for Machine Learning**Top KDnuggets tweets, Jan 29-30: Visual.ly Data Visualization Catalog; 100 numpy exercises, from Novice to Expert Data Scientists**- Jan 31, 2014.

Visual.ly Data Visualization Catalog help you choose the right visualization; 100 numpy exercises, from Novice to Expert Data Scientists; R vs Python Duel, Contest 1A - download, process 2GB census data; Online course: More Data Mining with Weka