# Tag: Convolutional Neural Networks

**Medical Image Analysis with Deep Learning , Part 2**- Apr 13, 2017.

In this article we will talk about basics of deep learning from the lens of Convolutional Neural Nets. We plan to use this knowledge to build CNNs in the next post and use Keras to develop a model to predict lung cancer.**3 practical thoughts on why deep learning performs so well**- Feb 3, 2017.

Why does Deep Learning perform better than other machine learning methods? We offer 3 reasons: integration of integration of feature extraction within the training process, collection of very large data sets, and technology development.**Top arXiv Papers, January: ConvNets Advances, Wide Instead of Deep, Adversarial Networks Win, Learning to Reinforcement Learn**- Feb 3, 2017.

Check out the top arXiv Papers from January, covering convolutional neural network advances, why wide may trump deep, generative adversarial networks, learning to reinforcement learn, and more.**ResNets, HighwayNets, and DenseNets, Oh My!**- Dec 19, 2016.

This post walks through the logic behind three recent deep learning architectures: ResNet, HighwayNet, and DenseNet. Each make it more possible to successfully trainable deep networks by overcoming the limitations of traditional network design.**KDnuggets™ News 16:n41, Nov 16: Top 10 Amazon Books in Data Mining; Intuitive Explanation of Convolutional Neural Nets**- Nov 16, 2016.

Also An Intuitive Explanation of Convolutional Neural Networks; Data Scientists vs Data Analysts - Part 1; How to Rank 10% in Your First Kaggle Competition.**An Intuitive Explanation of Convolutional Neural Networks**- Nov 11, 2016.

This article provides a easy to understand introduction to what convolutional neural networks are and how they work.**Deep Learning cleans podcast episodes from ‘ahem’ sounds**- Nov 8, 2016.

“3.5 mm audio jack… Ahem!!” where did you hear that? ;) Well, this post is not about Google Pixel vs iPhone 7, but how to remove ugly “Ahem” sound from a speech using deep convolutional neural network. I must say, very interesting read.**Deep Learning Key Terms, Explained**- Oct 12, 2016.

Gain a beginner's perspective on artificial neural networks and deep learning with this set of 14 straight-to-the-point related key concept definitions, including Biological Neuron, Multilayer Perceptron (MLP), Feedforward Neural Network, and Recurrent Neural Network.**Up to Speed on Deep Learning: August Update, Part 2**- Sep 23, 2016.

This is the second part of an overview of deep learning stories that made news in August. Look to see if you have missed anything.**Deep Learning Reading Group: Deep Residual Learning for Image Recognition**- Sep 22, 2016.

Published in 2015, today's paper offers a new architecture for Convolution Networks, one which has since become a staple in neural network implementation. Read all about it here.**Up to Speed on Deep Learning: August Update**- Sep 21, 2016.

Check out this thorough roundup of deep learning stories that made news in August, and see if there are any items of note that you missed.**KDnuggets™ News 16:n33, Sep 14: Top Algorithms Used by Data Scientists; (Not So) New Data Scientist Venn Diagram**- Sep 14, 2016.

Top Algorithms Used by Data Scientists; Guide To Understanding Convolutional Neural Nets; The (Not So) New Data Scientist Venn Diagram; Deep Learning Networks with Stochastic Depth.**A Beginner’s Guide To Understanding Convolutional Neural Networks Part 2**- Sep 8, 2016.

This is the second part of a thorough introductory treatment of convolutional neural networks. Have a look after reading the first part.**Up to Speed on Deep Learning: July Update, Part 2**- Sep 7, 2016.

Check out this second installation of deep learning stories that made news in July. See if there are any items of note you missed.**KDnuggets™ News 16:n32, Sep 7: Cartoon: Data Scientist was sexiest job until…; Up to Speed on Deep Learning**- Sep 7, 2016.

Cartoon: Data Scientist - the sexiest job of the 21st century until...; Up to Speed on Deep Learning: July Update; How Convolutional Neural Networks Work; Learning from Imbalanced Classes; What is the Role of the Activation Function in a Neural Network?**A Beginner’s Guide To Understanding Convolutional Neural Networks Part 1**- Sep 6, 2016.

Interested in better understanding convolutional neural networks? Check out this first part of a very comprehensive overview of the topic.**How Convolutional Neural Networks Work**- Aug 31, 2016.

Get an overview of what is going on inside convolutional neural networks, and what it is that makes them so effective.**3 Thoughts on Why Deep Learning Works So Well**- Aug 10, 2016.

While answering a posed question in his recent Quora Session, Yann LeCun also shared 3 high-level thoughts on why deep learning works so well.**Peeking Inside Convolutional Neural Networks**- Jun 29, 2016.

This post discusses using some tricks to peek inside of the neural network, and to visualize what the individual units in a layer detect.**What is the Difference Between Deep Learning and “Regular” Machine Learning?**- Jun 3, 2016.

Another concise explanation of a machine learning concept by Sebastian Raschka. This time, Sebastian explains the difference between Deep Learning and "regular" machine learning.**Machine Learning for Artists – Video lectures and notes**- Apr 28, 2016.

Art has always been deep for those who appreciate it... but now, more than ever, deep learning is making a real impact on the art world. Check out this graduate course, and its freely-available resources, focusing on this very topic.**Must Know Tips for Deep Learning Neural Networks, Part 1**- Mar 22, 2016.

Deep learning is white hot research topic. Add some solid deep learning neural network tips and tricks from a PhD researcher.**Top /r/MachineLearning Posts, February: AlphaGo, Distributed TensorFlow, Neural Network Image Enhancement**- Mar 2, 2016.

In February on /r/MachineLearning, we get a run-down of the AlphaGo matches, Distributed TensorFlow is released, convolutional neural nets are cleaning Star Wars images, vintage science is on parade, military machine learning is criticized, and the overwhelmed researcher is given advice.**Around the World in 60 Days: Getting Deep Speech to Work in Mandarin**- Feb 24, 2016.

Baidu continues to make impressive gains with deep learning. Their latest achievement centers on Mandarin speech recognition, which you can read about here from the researchers involved in the project.**The Top A.I. Breakthroughs of 2015**- Feb 2, 2016.

Learn about the biggest developments of 2015 in the field of Artificial Intelligence.**Top /r/MachineLearning Posts, January: Google Masters Go, Deep Learning Laughs, OpenAI AMA**- Feb 1, 2016.

In January on /r/MachineLearning: Go gets mastered, deep learning laughs, an OpenAI team AMA, convolutional neural nets colorize black and white photos, and the AI community loses a leader.**20+ hottest research papers on Computer Vision, Machine Learning**- Jan 15, 2016.

December's ICCV 2015 conference in Santiago, Chile has come and gone, but that's no reason not to know about its top papers. Get an update on which computer vision papers and researchers won awards.**7 Steps to Understanding Deep Learning**- Jan 11, 2016.

There are many deep learning resources freely available online, but it can be confusing knowing where to begin. Go from vague understanding of deep neural networks to knowledgeable practitioner in 7 steps!**Top 5 Deep Learning Resources, January**- Jan 7, 2016.

There is an increasing volume of deep learning research, articles, blog posts, and news constantly emerging. Our Deep Learning Reading List aims to make this information easier to digest.**Top /r/MachineLearning Posts, November: TensorFlow, Deep Convolutional Generative Adversarial Networks, and lolz**- Dec 2, 2015.

In November on /r/MachineLearning, we've got a good laugh, a fantastic image-generating convolutional generative adversarial network, and a whole lot of Google TensorFlow.**KDnuggets™ News 15:n38, Nov 18: TensorFlow Disappoints; Spark with Python; Deep Learning; Top 20 Books**- Nov 18, 2015.

TensorFlow Disappoints - Google Deep Learning falls shallow; Introduction to Spark with Python; A Statistical View of Deep Learning; Amazon Top 20 Books in Databases & Big Data.**Top KDnuggets tweets, Nov 10-16: 5 Books Every #Data Professional Needs; TensorFlow Disappoints – Google Deep Learning falls shallow**- Nov 17, 2015.

Deep Learning for #Visual Question Answering; 5 Books Every #Data Professional Needs; Deep, excellent overview: A Statistical View of #DeepLearning; TensorFlow Disappoints - Google #DeepLearning falls shallow.**Understanding Convolutional Neural Networks for NLP**- Nov 11, 2015.

Dive into the world of Convolution Neural Networks (CNN), learn how they work, how to apply them for NLP, and how to tune CNN hyperparameters for best performance.**MetaMind Mastermind Richard Socher: Uncut Interview**- Oct 20, 2015.

In a wide-ranging interview, Richard Socher opens up about MetaMind, deep learning, the nature of corporate research, and the future of machine learning.**Deep Learning and Artistic Style – Can art be quantified?**- Sep 17, 2015.

We analyze the latest advance in Deep learning which teaches computers to paint in the style of different famous painters, from Van Gogh to Picasso. Is it really Art?**CuDNN – A new library for Deep Learning**- Sep 19, 2014.

Becoming more and more popular, deep learning is proved to be useful in artificial intelligence. Last week, NVIDIA’s new library for deep neural networks, cuDNN, has attracted much attention.