- KDnuggets™ News 18:n27, Jul 18: Data Scientist was the sexiest job until…; Text Mining on the Command Line; Does PCA Really Work? - Jul 18, 2018.
Also: What is Minimum Viable (Data) Product?; Beating the 4-Year Slump: Mid-Career Growth in Data Science; GDPR after 2 months - What does it mean for Machine Learning?; Basic Image Data Analysis Using Numpy and OpenCV; fast.ai Deep Learning Part 2 Complete Course Notes
Tags: Data Science, Data Scientist, Deep Learning, Dimensionality Reduction, GDPR, Image Recognition, Machine Learning, PCA, Text Mining
- Key Takeaways from the Strata San Jose 2018 - Jul 16, 2018.
By dropping 'Hadoop' from its name, the @strataconf 2018 in San Jose signaled the emphasis on machine learning, cloud, streaming and real-time applications.
Tags: Data Science, Deep Learning, Explanation, GDPR, Interpretability, Machine Learning, San Jose, Strata, Streaming Analytics
Dimensionality Reduction : Does PCA really improve classification outcome? - Jul 13, 2018.
In this post, I am going to verify this statement using a Principal Component Analysis ( PCA ) to try to improve the classification performance of a neural network over a dataset.
Tags: Classification, Dimensionality Reduction, Machine Learning, PCA, R
- New eBook: Machine Learning for Fraud Prevention - Jul 12, 2018.
Get best practices on incorporating machine learning to automate your fraud prevention process and optimize workflows. Download this free ebook now.
Tags: ebook, Fraud Prevention, Machine Learning, WhitePages
- What is Minimum Viable (Data) Product? - Jul 12, 2018.
This post gives a personal insight into what Minimum Viable Product means for Machine Learning and the importance of starting small and iterating.
Tags: AirBnB, Data, Machine Learning, Products
- AI Solutionism - Jul 12, 2018.
Machine learning has huge potential for the future of humanity — but it won’t solve all our problems.
Tags: AI, Automation, Machine Learning, Neural Networks
- Top KDnuggets tweets, Jul 4-10: Fantastic notes on the freely available @fastdotai machine learning course - Jul 11, 2018.
Also: Analyze a Soccer (Football) Game Using #Tensorflow Object Detection; 18 Inspiring Women In AI, Big Data, Data Science, Machine Learning; Timsort - the fastest #sorting #algorithm you've never heard of.
Tags: fast.ai, Football, Machine Learning, Soccer, TensorFlow, Top tweets
- GDPR after 2 months – What does it mean for Machine Learning? - Jul 11, 2018.
Almost 2 months on from the GDPR introduction, how was machine learning affected? What does the future hold?
Tags: AI, Claudette, ePR, GDPR, Machine Learning
- Upcoming Meetings in AI, Analytics, Big Data, Data Science, Deep Learning, Machine Learning: July and Beyond - Jul 9, 2018.
Coming soon: ICDM/MLDM New York, Data Innovation Summits Las Vegas, ICML Stockholm, IJCAI/ECAI Stockholm, TDWI Anaheim, KDD-2018 London, JupyterCon NYC, and many more.
Tags: AI, Analytics, Boston, Data Science, London, Machine Learning, Meetings, New York City, Singapore
- Weak and Strong Bias in Machine Learning - Jul 6, 2018.
With the arrival of the GDPR there has been increased focus on non-discrimination in machine learning. This post explores different forms of model bias and suggests some practical steps to improve fairness in machine learning.
Tags: Bias, GDPR, Machine Learning, Privacy
- fast.ai Machine Learning Course Notes - Jul 6, 2018.
This posts is a collection of a set of fantastic notes on the fast.ai machine learning MOOC freely available online, as written and shared by a student. These notes are a valuable learning resource either as a supplement to the courseware or on their own.
Tags: fast.ai, Jeremy Howard, Machine Learning, MOOC
Automated Machine Learning vs Automated Data Science - Jul 2, 2018.
Just by adding the term "automated" in front of these 2 separate, distinct concepts does not somehow make them equivalent. Machine learning and data science are not the same thing.
Tags: Automated Data Science, Automated Machine Learning, Data Science, Machine Learning
- KDnuggets™ News 18:n25, Jun 27: 5 Clustering Algorithms Data Scientists Need to Know; Detecting Sarcasm with Deep Convolutional Neural Networks? - Jun 27, 2018.
Also 30 Free Resources for Machine Learning, Deep Learning, NLP ; 7 Simple Data Visualizations You Should Know in R.
Tags: Clustering, Data Visualization, Machine Learning, Neural Networks, R
5 Data Science Projects That Will Get You Hired in 2018 - Jun 26, 2018.
A portfolio of real-world projects is the best way to break into data science. This article highlights the 5 types of projects that will help land you a job and improve your career.
Tags: Data Preparation, Data Science, Data Visualization, Hiring, Jupyter, Machine Learning
- How to Execute R and Python in SQL Server with Machine Learning Services - Jun 25, 2018.
Machine Learning Services in SQL Server eliminates the need for data movement - you can install and run R/Python packages to build Deep Learning and AI applications on data in SQL Server.
Tags: Azure ML, Machine Learning, Microsoft, Python, R, SQL, SQL Server
30 Free Resources for Machine Learning, Deep Learning, NLP & AI - Jun 25, 2018.
Check out this collection of 30 ML, DL, NLP & AI resources for beginners, starting from zero and slowly progressing to the point that readers should have an idea of where to go next.
Tags: AI, Deep Learning, Machine Learning, NLP
- An Intuitive Introduction to Gradient Descent - Jun 21, 2018.
This post provides a good introduction to Gradient Descent, covering the intuition, variants and choosing the learning rate.
Tags: Gradient Descent, Machine Learning, Optimization
The 5 Clustering Algorithms Data Scientists Need to Know - Jun 20, 2018.
Today, we’re going to look at 5 popular clustering algorithms that data scientists need to know and their pros and cons!
Tags: Clustering, Data Scientist, DBSCAN, Machine Learning
- Get Packt Skill Up Developer Skills Report - Jun 19, 2018.
Find the top tools for 4 distinct industries, learn what do developers in different sectors say is the next big thing, and more. Also get any Packt book or video for just $10.
Tags: Developers, Free ebook, Machine Learning, Packt Publishing, Python
- 5 Key Takeaways from Strata London 2018 - Jun 19, 2018.
5 highlights and thoughts from my attendance to Strata London 2018.
Tags: Data Science, Deep Learning, Explanation, GDPR, London, Machine Learning, Strata, Streaming Analytics
- Data Science Predicting The Future - Jun 19, 2018.
In this article we will expand on the knowledge learnt from the last article - The What, Where and How of Data for Data Science - and consider how data science is applied to predict the future.
Tags: Data Science, Forecasting, Machine Learning, Programming Languages, Regression
- Choosing the Right Metric for Evaluating Machine Learning Models — Part 2 - Jun 19, 2018.
This will focus on commonly used metrics in classification, why should we prefer some over others with context.
Tags: Classification, Machine Learning, Metrics, Python, ROC-AUC
- Step Forward Feature Selection: A Practical Example in Python - Jun 18, 2018.
When it comes to disciplined approaches to feature selection, wrapper methods are those which marry the feature selection process to the type of model being built, evaluating feature subsets in order to detect the model performance between features, and subsequently select the best performing subset.
Tags: Feature Selection, Machine Learning, Python
- Apple: Sr Software Engineer – Applied Machine Learning - Jun 15, 2018.
Seeking a Senior Software Engineer, to help build innovative software applications. You should have development and implementation experience on large scale critical applications.
Tags: Apple, Austin, Machine Learning, Software Engineer, TX
- IoT on AWS: Machine Learning Models and Dashboards from Sensor Data - Jun 15, 2018.
I developed my first IoT project using my notebook as an IoT device and AWS IoT as infrastructure, with this "simple" idea: collect CPU Temperature from my Notebook running on Ubuntu, send to Amazon AWS IoT, save data, make it available for Machine Learning models and dashboards.
Tags: AWS, Dashboard, IoT, Machine Learning, Rubens Zimbres
- KDnuggets™ News 18:n23, Jun 13: Did Python declare victory over R?; Master the Netflix Interview; Deep Learning Projects DIY Style - Jun 13, 2018.
Also: Command Line Tricks For Data Scientists; How (dis)similar are my train and test data?; 5 Machine Learning Projects You Should Not Overlook, June 2018; Introduction to Game Theory; Human Interpretable Machine Learning
Tags: Data Science, Deep Learning, Interview Questions, Machine Learning, Netflix, Python, R, Training Data
- A Better Stats 101 - Jun 12, 2018.
Statistics encourages us to think systemically and recognize that variables normally do not operate in isolation, and that an effect usually has multiple causes. Some call this multivariate thinking. Statistics is particularly useful for uncovering the Why.
Tags: Data Science, Machine Learning, Statistics
5 Machine Learning Projects You Should Not Overlook, June 2018 - Jun 12, 2018.
Here is a new installment of 5 more machine learning or machine learning-related projects you may not yet have heard of, but may want to consider checking out!
Tags: Interpretability, Keras, Machine Learning, Model Performance, NLP, Overlook, Recurrent Neural Networks, Visualization
- Why you need to improve your training data, and how to do it - Jun 11, 2018.
This article examines the way you need to improve your training data and how it can be accomplished, including speech commands, choosing the right data, picking a model fast and more.
Pages: 1 2
Tags: AI, Andrej Karpathy, Machine Learning, Training Data
- How (dis)similar are my train and test data? - Jun 7, 2018.
This articles examines a scenario where your machine learning model can fail.
Tags: Data Science, Datasets, Feature Selection, Machine Learning, Training Data
The 6 components of Open-Source Data Science/ Machine Learning Ecosystem; Did Python declare victory over R? - Jun 6, 2018.
We find 6 tools form the modern open source Data Science / Machine Learning ecosystem; examine whether Python declared victory over R; and review which tools are most associated with Deep Learning and Big Data.
Tags: Anaconda, Apache Spark, Data Science, Keras, Machine Learning, Open Source, Poll, Python, R, RapidMiner, Scala, scikit-learn, TensorFlow
- Human Interpretable Machine Learning (Part 1) — The Need and Importance of Model Interpretation - Jun 6, 2018.
A brief introduction into machine learning model interpretation.
Tags: Interpretability, Machine Learning
- ioModel Machine Learning Research Platform – Open Source - Jun 5, 2018.
This article introduces ioModel, an open source research platform that ingests data and automatically generates descriptive statistics on that data.
Tags: Data Preparation, GitHub, Machine Learning, Open Source, Postgres, Python
- Three techniques to improve machine learning model performance with imbalanced datasets - Jun 5, 2018.
The primary objective of this project was to handle data imbalance issue. In the following subsections, I describe three techniques I used to overcome the data imbalance problem.
Tags: Balancing Classes, Machine Learning, Unbalanced
- Apple: Sr Software Engineer, Applied Machine Learning - Jun 5, 2018.
Seeking an energetic senior software engineer to help us develop, improve, and expand our cutting edge platform to ensure that the performance of our machine learning environment is second-to-none.
Tags: Apple, CA, Cupertino, Machine Learning, Software Engineer
- How To Build Intelligent Dashboards Powered by Machine Learning - Jun 1, 2018.
In this webinar on Jun 5, 1:00 pm ET, analytics industry expert Jen Underwood will demonstrate how to visualize machine learning results with dashboard tools.
Tags: Business Intelligence, Dashboard, DataRobot, Machine Learning
- Descriptive analytics, machine learning, and deep learning viewed via the lens of CRISP-DM - May 29, 2018.
CRISP-DM methodology is a must teach to explain analytics project steps. This article purpose it to complement it with specific chart flow that explain as simply as possible how it is more likely used in descriptive analytics, classic machine learning or deep learning.
Tags: CRISP-DM, Deep Learning, Descriptive Analytics, Machine Learning
10 More Free Must-Read Books for Machine Learning and Data Science - May 28, 2018.
Summer, summer, summertime. Time to sit back and unwind. Or get your hands on some free machine learning and data science books and get your learn on. Check out this selection to get you started.
Tags: Books, Data Science, ebook, Free ebook, Machine Learning
- Machine Learning Breaking Bad – addressing Bias and Fairness in ML models - May 25, 2018.
As the use of analytics proliferate, companies will need to be able to identify models that are breaking bad.
Tags: Ben Lorica, Bias, Machine Learning
- How Not to Regulate the Data Economy - May 24, 2018.
The GDPR will affect not just tech companies but any company that handles customer data — in other words, every company. And it will affect the use of data throughout the world, not just in Europe...
Tags: GDPR, Google, Machine Learning, Pedro Domingos, Privacy
- Mastering Advanced Analytics with Apache Spark - May 22, 2018.
Get ebook with a collection of the most popular technical blog posts that introduce you to machine learning on Apache Spark, and highlight many of the major developments around Spark MLlib and GraphX.
Tags: Advanced Analytics, Apache Spark, Databricks, Graph Analytics, Machine Learning, MLlib
Frameworks for Approaching the Machine Learning Process - May 21, 2018.
This post is a summary of 2 distinct frameworks for approaching machine learning tasks, followed by a distilled third. Do they differ considerably (or at all) from each other, or from other such processes available?
Tags: Francois Chollet, Machine Learning, Process, Workflow
- Kernel Machine Learning (KernelML) - Generalized Machine Learning Algorithm - May 18, 2018.
This article introduces a pip Python package called KernelML, created to give analysts and data scientists a generalized machine learning algorithm for complex loss functions and non-linear coefficients.
Tags: Clustering, Machine Learning, Python
- How to Organize Data Labeling for Machine Learning: Approaches and Tools - May 16, 2018.
The main challenge for a data science team is to decide who will be responsible for labeling, estimate how much time it will take, and what tools are better to use.
Pages: 1 2
Tags: Altexsoft, Crowdsourcing, Data Labeling, Data Preparation, Image Recognition, Machine Learning, Training Data
- The Executive Guide to Data Science and Machine Learning - May 10, 2018.
This article provides a short introductory guide for executives curious about data science or commonly used terms they may encounter when working with their data team. It may also be of interest to other business professionals who are collaborating with data teams or trying to learn data science within their unit.
Tags: Big Data, Business, Data Science, Machine Learning
- Deep learning scaling is predictable, empirically - May 10, 2018.
This study starts with a simple question: “how can we improve the state of the art in deep learning?”
Tags: Deep Learning, Machine Learning, Scalability
- What’s Hot in Machine Learning? Just Ask PAW Founder Eric Siegel - May 9, 2018.
What will 2018's key trends for machine learning be? Read what Predictive Analytics World Founder Eric Siegel has to say on the subject. And don't forget to register for Mega-PAW in Las Vegas, Jun 3-7!
Tags: Eric Siegel, Las Vegas, Machine Learning, NV, PAW, Predictive Analytics World
- 7 Useful Suggestions from Andrew Ng “Machine Learning Yearning” - May 8, 2018.
Machine Learning Yearning is a book by AI and Deep Learning guru Andrew Ng, focusing on how to make machine learning algorithms work and how to structure machine learning projects. Here we present 7 very useful suggestions from the book.
Tags: Andrew Ng, Book, Data Cleaning, Data Preparation, Free ebook, Machine Learning, Metrics
- Top Data Science, Machine Learning Courses from Udemy – May 2018 - May 8, 2018.
Learn Machine Learning, Data Science, Python, Azure Machine Learning, and more with Udemy Mother's Day $9.99 sale - get top courses from leading instructors.
Tags: Azure ML, Data Science, Machine Learning, Python, Udemy
5 Reasons Logistic Regression should be the first thing you learn when becoming a Data Scientist - May 8, 2018.
Learn Logistic Regression first to become familiar with the pipeline and not being overwhelmed with fancy algorithms.
Tags: Data Scientist, Logistic Regression, Machine Learning
2018 KDnuggets Poll: What software you used for Analytics, Data Mining, Data Science, Machine Learning projects in the past 12 months? - May 7, 2018.
Vote in KDnuggets 19th Annual Poll: What software you used for Analytics, Data Mining, Data Science, Machine Learning projects in the past 12 months?
Tags: Data Mining Software, Data Science, Machine Learning, Poll
- Deep Conversations: Lisha Li, Principal at Amplify Partners - May 3, 2018.
Mathematician Lisha Li expounds on how she thrives as a Venture Capitalist at Amplify Partners to identify, invest and nurture the right startups in Machine Learning and Distributed Systems.
Pages: 1 2
Tags: A/B Testing, Adversarial, AI, Capsule Networks, Deep Learning, Interview, Machine Learning, Mathematics, Pinterest, Startups, Stitch Fix, VC
- C3 IoT: Sr Software Engineer, Machine Learning - May 2, 2018.
Seeking a Senior Software Engineer, Machine Learning to build and enhance tools for the Data Science team to mine data at scale, and enable the integration of Machine Learning models in C3 IoT Platform.
Tags: C3 IoT, CA, Machine Learning, Redwood City, Software Engineer
- KDnuggets™ News 18:n18, May 2: Blockchain Explained in 7 Python Functions; Data Science Dirty Secret; Choosing the Right Evaluation Metric - May 2, 2018.
Also: Building Convolutional Neural Network using NumPy from Scratch; Data Science Interview Guide; Implementing Deep Learning Methods and Feature Engineering for Text Data: The GloVe Model; Jupyter Notebook for Beginners: A Tutorial
Tags: Blockchain, Convolutional Neural Networks, Data Science, Machine Learning, Metrics, numpy, Python
50+ Useful Machine Learning & Prediction APIs, 2018 Edition - May 1, 2018.
Extensive list of 50+ APIs in Face and Image Recognition ,Text Analysis, NLP, Sentiment Analysis, Language Translation, Machine Learning and prediction.
Tags: API, Face Recognition, Image Recognition, Machine Learning, Natural Language Processing, Sentiment Analysis, Text Analytics

Data Science vs Machine Learning vs Data Analytics vs Business Analytics - May 1, 2018.
This article gives a broad overview of data science and the various fields within it, including business analytics, data analytics, business intelligence, advanced analytics, machine learning, and AI.
Tags: AI, Business, Business Analytics, Data Analytics, Data Science, Machine Learning
- Operational Machine Learning: Seven Considerations for Successful MLOps - Apr 30, 2018.
In this article, we describe seven key areas to take into account for successful operationalization and lifecycle management (MLOps) of your ML initiatives
Tags: DevOps, Machine Learning, Metrics, MLOps
- What should be focus areas for Machine Learning / AI in 2018? - Apr 27, 2018.
This article looks at what are the recent trends in data science/ML/AI and suggests subareas DS groups need to focus on.
Tags: 2018 Predictions, AI, Machine Learning, Production
Choosing the Right Metric for Evaluating Machine Learning Models – Part 1 - Apr 27, 2018.
Each machine learning model is trying to solve a problem with a different objective using a different dataset and hence, it is important to understand the context before choosing a metric.
Tags: Machine Learning, Metrics, Python, Regression
- The Dirty Little Secret Every Data Scientist Knows (but won’t admit) - Apr 26, 2018.
Most people don’t realize, but the actual “fancy” machine learning algorithm is like the last mile of the marathon. There is so much that must be done before you get there!
Tags: Data Cleaning, Data Preparation, Data Science, Machine Learning
- ML Powering Marketing Automation: New Guidebook - Apr 24, 2018.
Understanding and quantifying a customer's journey - otherwise known as marketing attribution - is essential for marketers to analyze the ROI from campaigns. Get the latest guidebook to understand how its done!
Tags: Automation, Book, Dataiku, Machine Learning
- Top 16 Open Source Deep Learning Libraries and Platforms - Apr 24, 2018.
We bring to you the top 16 open source deep learning libraries and platforms. TensorFlow is out in front as the undisputed number one, with Keras and Caffe completing the top three.
Tags: Caffe, GitHub, Keras, Machine Learning, Open Source, TensorFlow
- Expedia: Senior Applied Researcher – Machine Learning - Apr 23, 2018.
Seeking top-notch applied researchers and scientists interested in breaking new grounds to solve some of the most complex computational problems in the marketing domain.
Tags: Bellevue, Expedia, Machine Learning, Researcher, WA
- Let’s Admit It: We’re a Long Way from Using “Real Intelligence” in AI - Apr 19, 2018.
With the growth of AI systems and unstructured data, there is a need for an independent means of data curation, evaluation and measurement of output that does not depend on the natural language constructs of AI and creates a comparative method of how the data is processed.
Tags: AI, Machine Learning, NLP, Unstructured data
- KDnuggets™ News 18:n16, Apr 18: Key Algorithms and Statistical Models; Don’t learn Machine Learning in 24 hours; Data Scientist among the best US Jobs in 2018 - Apr 18, 2018.
Also: Top 10 Technology Trends of 2018; 12 Useful Things to Know About Machine Learning; Robust Word2Vec Models with Gensim & Applying Word2Vec Features for Machine Learning Tasks; Understanding What is Behind Sentiment Analysis - Part 1; Getting Started with PyTorch
Tags: Algorithms, Career, Data Scientist, Machine Learning, PyTorch, Statistical Modeling, Trends

7 Books to Grasp Mathematical Foundations of Data Science and Machine Learning - Apr 17, 2018.
It is vital to have a good understanding of the mathematical foundations to be proficient with data science. With that in mind, here are seven books that can help.
Tags: Book, Data Science, Ian Goodfellow, Machine Learning, Mathematics, Robert Tibshirani, Vladimir Vapnik
Key Algorithms and Statistical Models for Aspiring Data Scientists - Apr 16, 2018.
This article provides a summary of key algorithms and statistical techniques commonly used in industry, along with a short resource related to these techniques.
Tags: Algorithms, Data Science, Machine Learning, Online Education, Statistics
- Are High Level APIs Dumbing Down Machine Learning? - Apr 16, 2018.
Libraries like Keras simplify the construction of neural networks, but are they impeding on practitioners full understanding? Or are they simply useful (and inevitable) abstractions?
Tags: API, Deep Learning, Francois Chollet, Keras, Machine Learning, Neural Networks, TensorFlow
- Don’t learn Machine Learning in 24 hours - Apr 13, 2018.
When it comes to machine learning, there's no quick way of teaching yourself - you're in it for the long haul.
Tags: Advice, Andrew Ng, Machine Learning, Peter Norvig
- Unlock the Next Era of Analytics – AI and Machine Learning at Scale - Apr 12, 2018.
Join us on Apr 19 for an interactive virtual event to hear from a panel of analytic experts as they dispel the myths and dive into the nitty-gritty of how AI and machine learning will impact analytic teams.
Tags: AI, Alteryx, Machine Learning, Scalability
- Onboarding Your Machine Learning Program - Apr 12, 2018.
Machine Learning's popularity is continuing to grow and has engraved itself in pretty much every industry. This article contains lessons from a data scientist on how to unlock it's full potential.
Tags: Advice, Applications, Cats, Industry, Machine Learning
12 Useful Things to Know About Machine Learning - Apr 12, 2018.
This is a summary of 12 key lessons that machine learning researchers and practitioners have learned include pitfalls to avoid, important issues to focus on and answers to common questions.
Pages: 1 2
Tags: Causation, Correlation, Feature Engineering, High-dimensional, Machine Learning, Overfitting, Pedro Domingos
Ten Machine Learning Algorithms You Should Know to Become a Data Scientist - Apr 11, 2018.
It's important for data scientists to have a broad range of knowledge, keeping themselves updated with the latest trends. With that being said, we take a look at the top 10 machine learning algorithms every data scientist should know.
Pages: 1 2
Tags: Algorithms, Clustering, Convolutional Neural Networks, Decision Trees, Machine Learning, Neural Networks, PCA, Regression, SVM
- Managing model complexity in the fight against fraud, Apr 18 Webinar - Apr 10, 2018.
Learn how to optimize your models by leveraging robust data sets that improve performance; avoiding endless feature engineering and overfitting; and other useful steps.
Tags: Feature Engineering, Fraud Detection, Machine Learning, WhitePages
Top 8 Free Must-Read Books on Deep Learning - Apr 10, 2018.
Deep Learning is the newest trend coming out of Machine Learning, but what exactly is it? And how do I learn more? With that in mind, here's a list of 8 free books on deep learning.
Tags: Deep Learning, Deep Neural Network, Free ebook, Machine Learning, Neural Networks
- Comet.ml – Machine Learning Experiment Management - Apr 9, 2018.
This article presents comet.ml – a platform that allows tracking machine learning experiments with an emphasis on collaboration and knowledge sharing.
Tags: Comet.ml, Experimentation, Machine Learning
- Machine Learning for Text - Apr 9, 2018.
This book covers machine learning techniques from text using both bag-of-words and sequence-centric methods. The scope of coverage is vast, and it includes traditional information retrieval methods and also recent methods from neural networks and deep learning.
Tags: Book, Charu Aggarwal, Information Retrieval, Machine Learning, Text Mining
- Where Analytics, Data Science, Machine Learning Were Applied: Trends and Analysis - Apr 9, 2018.
CRM/Consumer Analytics, Finance, and Banking are still the leading applications, but Health Care and Fraud Detection are gaining. Anti-spam, Manufacturing, and Social are the fastest growing sectors in 2017, while Oil / Gas / Energy and Social Networks analysis have declined.
Pages: 1 2
Tags: Applications, Data Science, Industry, Machine Learning, Poll
- Build a Foundation that Supports AI and Machine Learning - Apr 6, 2018.
In an upcoming livestream on April 19, we’ll dig into how to build a foundation that supports AI and Machine Learning with industry experts and uncover what many companies are going through.
Tags: AI, Alteryx, Analytics Strategy, Machine Learning
- Top Data Science, Machine Learning Courses from Udemy – April 2018 - Apr 5, 2018.
Udemy April $10.99 sale is now going on top courses from leading instructors and learn Machine Learning, Data Science, Python, Azure Machine Learning, and more.
Tags: Azure ML, Data Science, Machine Learning, Python, Udemy
- What Does GDPR Mean for Machine Learning? - Apr 4, 2018.
This post investigates how the GDPR, which comes into force at the end of May, will effect machine learning.
Tags: Europe, GDPR, Machine Learning, Privacy
Supervised vs. Unsupervised Learning - Apr 4, 2018.
Understanding the differences between the two main types of machine learning methods.
Tags: Machine Learning, Supervised Learning, Unsupervised Learning
- Upcoming Meetings in AI, Analytics, Big Data, Data Science, Deep Learning, Machine Learning: April and Beyond - Apr 3, 2018.
Coming soon: AnacondaCON Austin, QCon.ai SF, INFORMS Baltimore, AI Conference NYC, Data Science Salon Dallas, AI Expo Global London, ODSC Boston, and many more.
Tags: AI, Analytics, Big Data, Boston, Data Science, London, Machine Learning, Meetings, New York City, San Francisco
Top 20 Deep Learning Papers, 2018 Edition - Apr 3, 2018.
Deep Learning is constantly evolving at a fast pace. New techniques, tools and implementations are changing the field of Machine Learning and bringing excellent results.
Tags: Algorithms, Deep Learning, Machine Learning, Neural Networks, TensorFlow, Text Analytics, Trends
- Foot Locker: Sr Solutions Architect – Machine Learning and AI Technologies - Mar 30, 2018.
Seeking a candidate to lead the data driven transformation of Foot Locker in partnership with members of the data, CX and infrastructure teams. This role has end-to-end responsibilities for our ML/AI/Cognitive platform - from design, thru technical specification, to delivery.
Tags: AI, Architecture, Bradenton, FL, Foot Locker, Machine Learning
- 5 Things You Need to Know about Reinforcement Learning - Mar 28, 2018.
With the popularity of Reinforcement Learning continuing to grow, we take a look at five things you need to know about RL.
Tags: Machine Learning, Markov Chains, Reinforcement Learning, Richard Sutton
- MLaaS: Best Practices for Machine Learning as a Service platform, Apr 5 Webinar - Mar 26, 2018.
Learn how Machine Learning as a Service initiatives bring Data Scientists, IT and Analytic Operations together to deploy and scale more models.
Tags: Enterprise, Machine Learning, Open Data Group
- New KDnuggets Poll: Where did you apply Analytics, Data Science, Machine Learning methods in 2017? - Mar 25, 2018.
Data Science and Machine Learning are applicable very widely, so it is interesting to see how the application areas change. KDnuggets was running this question each year since 2006, so please vote and we will analyze the results and report the trends.
Tags: Applications, Data Science, Industry, Machine Learning, Poll
- Introduction to k-Nearest Neighbors - Mar 22, 2018.
What is k-Nearest-Neighbors (kNN), some useful applications, and how it works.
Tags: K-nearest neighbors, Machine Learning
- CatBoost vs. Light GBM vs. XGBoost - Mar 22, 2018.
Who is going to win this war of predictions and on what cost? Let’s explore.
Tags: Decision Trees, Gradient Boosting, Machine Learning, XGBoost
- Score a Nvidia Titan V GPU at AnacondaCON 2018 - Mar 21, 2018.
At AnacondaCON 2018 in Austin, Apr 8-11, you'll learn how data scientists are using GPUs for machine learning across a variety of applications and industries. The best part? One lucky attendee will receive a FREE NVIDIA TITAN V GPU!
Tags: Anaconda, Austin, Data Science, GPU, Machine Learning, NVIDIA, TX
- KDnuggets™ News 18:n12, Mar 21: Will GDPR Make Machine Learning Illegal?; 5 Things You Need to Know about Big Data - Mar 21, 2018.
Also: A Beginner's Guide to Data Engineering - Part II; Introduction to Optimization with Genetic Algorithm; Introduction to Markov Chains; Your free 70-page guide to a career in data science
Tags: Big Data, Data Engineering, Data Science, GDPR, Machine Learning, Markov Chains, Optimization
- Making Machine Learning Simple - Mar 20, 2018.
Learn how to build better models with support for multiple data sources and feature extraction at scale, simplify operations with on-demand cluster management, and more.
Tags: Apache Spark, Databricks, Feature Extraction, Machine Learning
- What Machine Learning Isn’t - Mar 20, 2018.
There are limits to what the state-of-the-art is capable of, which doesn’t mean that there aren’t tons of perfect use cases for machine learning, but does mean that you have to go into the process with your eyes open.
Tags: Face Detection, Machine Learning, Optical Analytics, Video recognition
- Multiscale Methods and Machine Learning - Mar 19, 2018.
We highlight recent developments in machine learning and Deep Learning related to multiscale methods, which analyze data at a variety of scales to capture a wider range of relevant features. We give a general overview of multiscale methods, examine recent successes, and compare with similar approaches.
Tags: Algorithms, Data Science, Deep Learning, Machine Learning, Statistics
- Quick Feature Engineering with Dates Using fast.ai - Mar 16, 2018.
The fast.ai library is a collection of supplementary wrappers for a host of popular machine learning libraries, designed to remove the necessity of writing your own functions to take care of some repetitive tasks in a machine learning workflow.
Tags: fast.ai, Feature Engineering, Machine Learning, Pandas, Python, Time Series
- So, How Many Machine Learning Models You Have NOT Built? - Mar 14, 2018.
Investigating how data scientists approach machine learning and applying this to the 'ship repair man' analogy.
Tags: Advice, Business, Data Scientist, Machine Learning, ROI
Will GDPR Make Machine Learning Illegal? - Mar 14, 2018.
Does GDPR require Machine Learning algorithms to explain their output? Probably not, but experts disagree and there is enough ambiguity to keep lawyers busy.
Tags: Europe, Explanation, GDPR, Law, Machine Learning, Pedro Domingos, Privacy
- KDnuggets™ News 18:n11, Mar 14: Two sides of getting a job as a Data Scientist; 5 things to know about Machine Learning - Mar 14, 2018.
Also 18 Inspiring Women In AI, Big Data, Data Science, Machine Learning; Great Data Scientists Don't Just Think Outside the Box; Favorite Data Science / Machine Learning Blog; Text Processing in R.
Tags: Data Scientist, Machine Learning, R, Women
- How to do Machine Learning Efficiently - Mar 13, 2018.
I now believe that there is an art, or craftsmanship, to structuring machine learning work and none of the math heavy books I tended to binge on seem to mention this.
Tags: Architecture, fast.ai, Machine Learning, Validation, Workflow
- Top Data Science, Machine Learning Courses from Udemy – March 2018 - Mar 12, 2018.
Udemy St Patrick's Day $11.99 sale on top courses from leading instructors and learn Machine Learning, Data Science, Python, Azure Machine Learning, and more.
Tags: Azure ML, Data Science, Machine Learning, Python, Udemy
- Model Risk Management with Automated Machine Learning, Mar 29 Webinar - Mar 9, 2018.
Model Risk Management has recently become a very hot topic in regulatory and compliance-rich industries. Join DataRobot on Mar 29, 2018 for a webinar titled "Model Risk Management with Automated Machine Learning."
Tags: Automated Machine Learning, DataRobot, Machine Learning, Modeling
- Great Data Scientists Don’t Just Think Outside the Box, They Redefine the Box - Mar 8, 2018.
The best data scientists have strong imaginative skills for not just “thinking outside the box” – but actually redefining the box – in trying to find variables and metrics that might be better predictors of performance.
Tags: Andrew Ng, Data Science, Data Scientist, Deep Learning, Machine Learning
5 Things to Know About Machine Learning - Mar 7, 2018.
This post will point out 5 thing to know about machine learning, 5 things which you may not know, may not have been aware of, or may have once known and now forgotten.
Tags: Accuracy, Data Preparation, Ensemble Methods, Google Colab, Jupyter, Machine Learning, Validation
- The 5th AI+Blockchain NEXTCon, Santa Clara, April 10-13, 2018 - Mar 5, 2018.
The 5th AI+Blockchain NEXTCon brings 50+ tech lead speakers from Microsoft, Google, Facebook, LinkedIn, Uber, other leading firms to share best practices and solutions in machine learning, deep learning, NLP, Data science, Blockchain and more. Save 30% by Mar 9 with code KDNUGGET100.
Tags: AI, Blockchain, CA, Data Science, Deep Learning, Industry, Machine Learning, Santa Clara
Time Series for Dummies – The 3 Step Process - Mar 5, 2018.
Time series forecasting is an easy to use, low-cost solution that can provide powerful insights. This post will walk through introduction to three fundamental steps of building a quality model.
Tags: Data Science, Deep Learning, Machine Learning, Predictive Modeling, Stationarity, Time Series
- TDWI Chicago, May 6-11: Get Your Hands Dirty With Data – KDnuggets Offer - Mar 2, 2018.
Attend the Hands-on Lab series and bring practical skills back from Chicago. Save 30% through March 16 with priority code KD30.
Tags: Chicago, Hadoop, IL, Machine Learning, Python, R, TDWI, Training
How data science can improve retail - Mar 1, 2018.
We’re going to take a look at a few surprising ways that data science can increase your sales, both offline and online.
Tags: Data Science, Data Warehouse, Machine Learning, Retail
- Top KDnuggets tweets, Feb 21-27: Top 20 Python #AI and #MachineLearning Open Source Projects; Intro to Reinforcement Learning Algorithms - Feb 28, 2018.
Also: #NeuralNetwork #AI is simple. So... Stop pretending; 5 Free Resources for Getting Started with #DeepLearning for Natural Language Pro; Want a Job in #Data? Learn This
Tags: Deep Learning, Machine Learning, NLP, Python, Reinforcement Learning, Top tweets
- Jupyter Pop-up coming to Boston on March 21 - Feb 28, 2018.
Attend a day-long exploration of Jupyter's best practices and practical use cases in business and industry.
Tags: Boston, Jupyter, MA, Machine Learning, O'Reilly, Software Engineering
- McKinsey Analytics Online Hackathon, 10 March, 2018 - Feb 28, 2018.
Calling all coders and data scientists to join McKinsey 24-hour hackathon on March 10, 2018. Win All-expenses paid trip to a tech conference of your choice.
Tags: Advanced Analytics, Hackathon, Machine Learning, McKinsey, Recommender Systems
- The Current Hype Cycle in Artificial Intelligence - Feb 28, 2018.
Over the past decade, the field of artificial intelligence (AI) has seen striking developments. As surveyed in, there now exist over twenty domains in which AI programs are performing at least as well as (if not better than) humans.
Tags: AGI, AI, Deep Learning, History, Hype, Jobs, Machine Learning
- KDnuggets™ News 18:n09, Feb 28: Gartner 2018 MQ for Data Science/ML – Gainers and Losers; Comparative Analysis of Top 6 BI/Data Viz Tools - Feb 28, 2018.
A Comparative Analysis of Top 6 BI and Data Visualization Tools; A Tour of The Top 10 Algorithms for Machine Learning Newbies; A Guide to Hiring Data Scientists.
Tags: Algorithms, Data Science Platform, Gartner, Machine Learning, Magic Quadrant
Gainers and Losers in Gartner 2018 Magic Quadrant for Data Science and Machine Learning Platforms - Feb 27, 2018.
We compare Gartner 2018 Magic Quadrant for Data Science, Machine Learning Platforms vs its 2017 version and identify notable changes for leaders and challengers, including IBM, SAS, RapidMiner, KNIME, Alteryx, H2O.ai, and Domino.
Tags: Alteryx, Anaconda, Angoss, Data Science Platform, Domino, Gartner, H2O, IBM, Knime, Machine Learning, Magic Quadrant, RapidMiner, SAS
- Applying Machine Learning to DevOps - Feb 27, 2018.
This article explains the synergy between DevOps and Machine Learning and their applications like tracking application delivery, troubleshooting and triage analytics, preventing production failures, etc.
Tags: DevOps, Machine Learning
- How Machine Learning is Advancing Data Centers - Feb 26, 2018.
Big Data revolution led to the explosion in Data Centers, which are consuming energy at increasingly higher rate. This blog reviews 2 standard methods for improving data center efficiency and argues that 3rd method - Machine Learning - is the best solution.
Tags: Data Center, DeepMind, Electricity, Machine Learning
- Gartner 2018 Magic Quadrant for Data Science and Machine Learning – Read the report - Feb 23, 2018.
Read Gartner 2018 Magic Quadrant for Data Science and Machine Learning Platforms, courtesy of Domino, and learn which data science platform is right for your organization and why Domino was named a Visionary.
Tags: Data Science Platform, Domino, Gartner, Machine Learning, Magic Quadrant
- Age of AI Conference 2018 – Day 2 Highlights - Feb 23, 2018.
Here are some of the highlights from the second day of the Age of AI Conference, February 1, at the Regency Ballroom in San Francisco.
Pages: 1 2
Tags: Adversarial, AI, CA, Conference, D-Wave Systems, Deep Learning, Machine Learning, Neural Networks, Quantum Computing, San Francisco, Security
Top 20 Python AI and Machine Learning Open Source Projects - Feb 20, 2018.
We update the top AI and Machine Learning projects in Python. Tensorflow has moved to the first place with triple-digit growth in contributors. Scikit-learn dropped to 2nd place, but still has a very large base of contributors.
Tags: GitHub, Machine Learning, Open Source, Python, scikit-learn, TensorFlow
- 5 Things You Need To Know About Data Science - Feb 19, 2018.
Here are 5 useful things to know about Data Science, including its relationship to BI, Data Mining, Predictive Analytics, and Machine Learning; Data Scientist job prospects; where to learn Data Science; and which algorithms/methods are used by Data Scientists
Tags: Algorithms, BI, Data Analytics, Data Mining, Data Science, Data Science Education, Data Scientist, Google Trends, Jobs, Machine Learning
Logistic Regression: A Concise Technical Overview - Feb 16, 2018.
Interested in learning the concepts behind Logistic Regression (LogR)? Looking for a concise introduction to LogR? This article is for you. Includes a Python implementation and links to an R script as well.
Tags: Algorithms, Classification, Logistic Regression, Machine Learning, Regression
- Resurgence of AI During 1983-2010 - Feb 16, 2018.
We discuss supervised learning, unsupervised learning and reinforcement learning, neural networks, and 6 reasons that helped AI Research and Development to move ahead.
Tags: AI, Big Data, History, Machine Learning, Neural Networks, Reinforcement Learning, Trends
- Cartoon: Machine Learning Problems in 2118 - Feb 14, 2018.
For Valentine's day, new KDnuggets cartoon looks at some problems Machine Learning can face in 2118.
Tags: Cartoon, Machine Learning, Robots, Valentine's Day
- KDnuggets™ News 18:n07, Feb 14: 5 Machine Learning Projects You Should Not Overlook; Intro to Python Ensembles - Feb 14, 2018.
5 Machine Learning Projects You Should Not Overlook; Introduction to Python Ensembles; Which Machine Learning Algorithm be used in year 2118?; Fast.ai Lesson 1 on Google Colab (Free GPU)
Tags: Algorithms, Data Science, Ensemble Methods, fast.ai, Feature Engineering, Google Colab, Machine Learning, Python, Scala
- Last chance to register to attend DataScience: Elevate in San Francisco - Feb 12, 2018.
DataScience: Elevate will be held Feb 22 in San Francisco. Register to be a part of a full day of panels and presentations from people and companies at the forefront of data science.
Tags: CA, Data Science, Datascience.com, Machine Learning, San Francisco
- 4 Things You Probably Didn’t Know Machine Learning and AI was used for - Feb 12, 2018.
AI was compared to the discovery of fire, but its impact hinges on how creative we are with the technology—just like it did for early humans employing fire. Here are four diverse examples of applied AI to get your creative juices flowing.
Tags: Aging, AI, Applications, Deep Learning, Machine Learning
- Which Machine Learning Algorithm be used in year 2118? - Feb 9, 2018.
So what were the answers popping in your head ? Random forest, SVM, K means, Knn or even Deep Learning? No, for the answer, we turn to Lindy Effect.
Tags: Algorithms, Machine Learning, Regression, Trends
- Introduction to Python Ensembles - Feb 9, 2018.
In this post, we'll take you through the basics of ensembles — what they are and why they work so well — and provide a hands-on tutorial for building basic ensembles.
Pages: 1 2
Tags: Decision Trees, Ensemble Methods, Machine Learning, Python, random forests algorithm, ROC-AUC, scikit-learn, XGBoost
- Top 15 Scala Libraries for Data Science in 2018 - Feb 9, 2018.
For your convenience, we have prepared a comprehensive overview of the most important libraries used to perform machine learning and Data Science tasks in Scala.
Tags: Apache Spark, Data Analysis, Data Science, Data Visualization, Machine Learning, NLP, Scala
5 Machine Learning Projects You Should Not Overlook - Feb 8, 2018.
It's about that time again... 5 more machine learning or machine learning-related projects you may not yet have heard of, but may want to consider checking out!
Tags: Bayesian, Gradient Boosting, Keras, Machine Learning, Overlook, PHP, Python, scikit-learn